Смекни!
smekni.com

Рибосомы (стр. 1 из 3)

План:

Введение

1. История исследований рибосомы

2. Строение и функции, разновидности рибосом

3. Принципы функционирования, роль РНК

4. Список литературы


Введение

Различают два осн. типа Р. Всем прокариотич. организмам (бактерии и синезеленые водоросли) свойственны т. наз. 70S Р., характеризующиеся коэф. (константой) седиментации ок. 70 единиц Сведберга, или 70S (по коэф. седиментации различают и Р. др. типов, а также субчастицы и биополимеры, входящие в состав Р.). Их мол. м. составляет 2,5 · 10 6, линейные размеры 20-25 нм. По хим. составу это рибонуклеопротеиды; они состоят только из рРНК и белка (соотношение этих компонентов 2:1). Рибо-сомная РНК в Р. присутствует гл. обр. в виде Mg-соли (по-видимому, частично и в виде Са-соли); магния в Р. до 2% от сухой массы. Кроме того, в разл. кол-вах (до 2,5%) могут присутствовать также катионы аминов-спермина H 2N(CH 2) 3NH(CH 2) 4NH(CH 2) 3NH 2, спермидина H 2N(CH 2) 3NH(CH 2) 4NH 2 и др.

Цитоплазма клеток всех эукариотич. организмов содержит неск. более крупные 80S Р. Их мол. м. ок. 4·10 6, линейные размеры 25-30 нм, содержание белка в них значительно больше, чем в прокариотической Р. (соотношение РНК: белок ок. 1:1). Рибосомная РНК 80S также связана в осн. с Mg и Са и с небольшим кол-вом полиаминов (спермин, спермидин и др.).

Хлоропласты и митохондрии эукариотич. клеток содержат Р., отличные от типа 80S. Р. хлоропластов высших растений принадлежат к истинному 70S типу. Митохонд-риальные Р. более разнообразны; их строение находится в зависимости от таксономич. принадлежности организма (т.е. от принадлежности к определенному виду, роду или семейству). Напр., митохондриальные Р. млекопитающих существенно мельче типичных 70S Р.; коэф. седиментации этих Р. составляет ок. 55S (т. наз. минирибосомы).

Р. из самых разнообразных организмов (как прокариотич., так и эукариотич.) имеют сходное строение. Они состоят из двух разделяемых субчастиц, или рибосомных субъединиц. При определенных условиях (напр., при понижении концентрации Mg 2+ в среде) Р. обратимо диссоциирует на две субчастицы с соотношением их мол. масс ок. 2:1. Прокарйотическая 70S Р. диссоциирует на субъединицы с коэф. седиментации 50S (мол. м. 1,5·10 6) и 30S (мол. м. 0,85·10 6). Эукариотическая Р. разделяется на субчастицы 60S и 40S. Две рибосомные субчастицы объединены в полную Р. строго определенным образом, предполагающим специфич. контакты их поверхностей.

Как прокариотические, так и эукариотические Р. содержат две разл. высокомол. рРНК (по одной на каждую субчастицу) и одну относительно низкомол. рРНК в большой субчастице.

Рибосомные белки большинства животных представлены в осн. умеренно основными полипептидами, хотя имеется неск. нейтральных и кислых белков. Мол. м. рибосомных белков варьирует от 6 тыс. до 60 тыс. В прокариотической Р. малая субчастица (30S) содержит ок. 20, большая (508)-ок. 30 разл. белков; в эукариотической P. 40S субчастица включает ок. 30 белков, а 60S-ок. 40 (обычно Р. не содержат двух или неск. одинаковых белков). Рибосомные белки характеризуются глобулярной компактной конформацией с развитой вторичной и третичной структурой; они занимают преим. периферич. положение в ядре, состоящем из рРНК. В отличие от вирусных нуклеопротеидов в структурно асим. рибосомном нуклеопротеиде рРНК не покрыта сплошной белковой оболочкой, а в ряде мест образует пов-сть Р. Плотность упаковки рРНК в Р. достаточно высока и приблизительно соответствует плотности кристаллич. упаковки гидратир. полинуклеотидов.

По-видимому, рРНК определяет осн. структурные и функцион. св-ва Р, в частности обеспечивает целостность рибосомных субъединиц, обусловливает их форму и ряд структурных особенностей. Специфич. пространств. структура рРНК детерминирует локализацию всех рибосомных белков, играет ведущую роль в организации функцион. центров Р.

Рибосомный синтез белка-многоэтапный процесс. Первая стадия (инициация) начинается с присоединения матричной РНК (мРНК) к малой рибосомной субчастице, не связанной с большой субчастицей. Характерно, что для начала процесса необходима именно диссоциированная Р. К образовавшемуся т. наз. инициаторному комплексу присоединяется большая рибосомная субчастица. В стадии инициации участвуют спец. инициирующий кодон (см. Генетический код), инициаторная транспортная РНК (тРНК) и специфич. белки (т. наз. факторы инициации). Пройдя стадию инициации, Р. переходит к последоват. считыванию кодонов мРНК по направлению от 5'- к 3'-концу, что сопровождается синтезом полипептидной цепи белка, кодируемого этой мРНК (подробнее о механизме синтеза полипептидов см. в ст. Трансляция). В этом процессе Р. функционирует как циклически работающая мол. машина. Рабочий цикл Р. при элонгации состоит из трех тактов: 1) кодонзави-симого связывания аминоацил-тРНК (поставляет аминокислоты в Р.), 2) транспептидации-переноса С-конца растущего пептида на аминоацил-тРНК, т.е. удлинения строящейся белковой цепи на одно звено, 3) транслокации-перемещения матрицы (мРНК) и пептидил-тРНК относительно Р. и переход Р. в исходное состояние, когда она может воспринять след. аминоацил-тРНК. Когда Р. достигнет специального терминирующего кодона мРНК, синтез полипептида прекращается. При участии специфич. белков (т. наз. факторов терминации) синтезир. полипептид освобождается из Р. После терминации Р. может повторить весь цикл с др. цепью мРНК или др. кодирующей последовательностью той же цепи.


Схема синтеза полипептидной цепи полирибосомой: I-начал о синтеза, II-окончание синтеза; а-мРНК, б-рибосома, в-большая субъединица рибосомы, г-малая субъединица рибосомы.

В клетках с интенсивной секрецией белка и развитым эндоплазматич. ретикулумом значит. часть цитоплазмати-ческой Р. прикреплена к его мембране на пов-сти, обращенной к цитоплазме. Эти Р. синтезируют полипептиды, к-рые непосредственно транспортируются через мембрану для дальнейшей секреции. Синтез полипептидов для внутриклеточных нужд происходит в осн. на свободных (не связанных с мембраной) Р. цитоплазмы. При этом транслирующие Р. не равномерно диспергированы в цитоплазме, а собраны в группы. Такие агрегаты Р. представляют собой структуры, где мРНК ассоциирована со многими Р., находящимися в процессе трансляции; эти структуры получили назв. полирибосом или полисом.

При интенсивном синтезе белка расстояние между Р. вдоль цепи мРНК в полирибосоме м. б. предельно коротким, т.е. Р. находятся почти вплотную друг к другу. Р., входящие в полирибосомы, работают независимо и каждая из них синтезирует полную полипептидную цепь (см. рис.).

Р ибосома — это округлая рибонуклеопротеиновая частица диаметром 20—30 нм. Она состоит из малой и большой субъединиц, объединение которых происходит в присутствии матричной (информационной) РНК (мРНК). Одна молекула мРНК обычно объединяет несколько рибосом наподобие нитки бус. Такую структуру называют полисомой. Полисомы свободно располагаются в основном веществе цитоплазмы или прикреплены к мембранам шероховатой цитоплазматической сети. В обоих случаях они служат местом активного синтеза белка. Сравнение соотношения количества свободных и прикрепленных к мембранам полисом в эмбриональных недифференцированных и опухолевых клетках, с одной стороны, и в специализированных клетках взрослого организма —с другой, привело к заключению, что на полисомах гиалоплазмы образуются белки для собственных нужд (для «домашнего» пользования) данной клетки, тогда как на полисомах гранулярной сети синтезируются белки, выводимые из клетки и используемые на нужды организма (например, пищеварительные ферменты, белки грудного молока). Рибосомы. Так же как и эндоплазматическая сеть, рибосомы были открыты только с помощью электронного микроскопа. Рибосомы - самые маленькие из клеточных органелл.

Рибосомы либо располагаются на поверхности мембраны гранулярной ЭПС в один ряд, либо образуют розетки и спирали. В тех клетках, где хорошо развита гранулярная ЭПС, например, в полностью дифференцированных клетках печени и поджелудочной железы, большинство рибосом связано с ее мембранами. В клетках же, где гранулярная ЭПС развита слабо, рибосомы преимущественно свободно располагаются в основном веществе цитоплазмы. К клеткам такого типа относятся плазмоциты лимфатических узлов и селезенки, овоциты человека и ряд других. Помимо цитоплазмы, рибосомы обнаружены и в клеточном ядре, где они имеют такую же округлую форму, строение и размеры, как и рибосомы цитоплазмы. Часть ядерных рибосом свободно располагается в кариоплазме, а часть их находится в связи с нитевидными структурами, из которых состоят остаточные хромосомы, обнаруживаемые обычно при электронномикроскопическом исследовании интерфазного ядра. В последнее время рибосомы обнаружены в митохондриях и пластидах клеток растений.

Биохимический анализ рибосом, полученных путем дифференциального центрифугирования клеточных гомогенатов, показал, что в состав их входит высокополимерная, так называемая рибосомальная РНК и белок. Соотношение этих двух компонентов в рибосомах почти одинаково.

Белок рибосом самых разнообразных клеток и разных организмов в общем одинаков по составу аминокислот, причем в нем часто преобладают основные аминокислоты, а следовательно, белки рибосом имеют ...? свойства. Рибосомы содержат также Mg2+.

Функции рибосом. Исследование ультраструктуры клеток многочисленных видов многоклеточных растений и животных, бактерий и простейших показало, что рибосомы - обязательный органоид каждой клетки. Наличие этого органоида во всех клетках, однородность его строения и химического состава свидетельствуют о важной роли рибосом в жизнедеятельности клеток. Было выяснено, что на рибосомах происходит синтез белков.

В процессах биосинтеза белка роль рибосом заключается в том, что к ним из основного вещества цитоплазмы непрерывно подносятся с помощью т-РНК аминокислоты, и происходит укладка этих аминокислот в полипептидные цепи в строгом соответствии с той генетической информацией, которая передается из ядра в цитоплазму через и-РНК, постоянно поступающую к рибосомам. На основании такой функции рибосом в белковом синтезе можно назвать их своего рода "сборочными конвейерами", на которых в клетках образуются белковые молекулы.