У многих высокоорганизованных систем формируется механизм обратной связи — реакция системы на воздействие окружающей среды. Если мы бросим камень, то он пролетит некоторое расстояние и упадет, никак не сопротивляясь этому. В данном случае обратная связь отсутствует. Но если мы попытаемся дернуть кошку за хвост, обратной связью, скорее всего, будут наши исцарапанные руки.
Существует несколько типов обратной связи. Система может своим поведением усиливать внешнее воздействие (если рота солдат будет идти по мосту, шагая «в ногу», мост может рухнуть из-за резонанса), при этом формируется положительная обратная связь. При уменьшении внешнего воздействия создается отрицательная обратная связь. Разновидностью таких связей является гомеостатическая обратная связь, сводящая внешнее воздействие к нулю. Примером может служить постоянная температура человеческого тела, остающаяся таковой несмотря на колебания температуры окружающей среды.
Механизм обратной связи делает систему более устойчивой, надежной и эффективной. Также он повышает ее внутреннюю организованность. Именно наличие механизма обратной связи дает
возможность говорить, что система имеет какие-то цели, что ее поведение целесообразно.
Практически для любой системы характерна иерархичность строения — последовательное включение системы более низкого уровня в систему более высокого уровня. Это означает, что отношения и связи в системе при определенном ее представлении сами могут рассматриваться как ее элементы, подчиняющиеся соответствующей иерархии. Это позволяет строить различные, не совпадающие между собой последовательности включения систем друг в друга, описывающие исследуемый материальный объект с разных сторон.
В соответствии с системным подходом в природе все взаимосвязано, поэтому можно выделить такие системы, которые включают элементы как живой, так и неживой природы. Естественные науки, начиная изучение материального мира с наиболее простых, непосредственно воспринимаемых человеком материальных объектов, переходят постепенно к изучению сложнейших структур материи, выходящих за пределы человеческого восприятия и несоизмеримых с объектами повседневного окружения. Применяя системный подход, естествознание не просто выделяет типы материальных систем, но и раскрывает их связи и соотношения.
Системный подход как интеграция научного знания
Понятие системы, как и системный подход в целом, было сформировано в XX в. на основе работ А.А. Богданова и Л. фон Берталанфи. Известный русский советский ученый А.А. Богданов стал основоположником тектологии (всеобщей организационной науки). Он утверждал, что любой предмет или явление имеет свою цель и устроен в соответствии с ней. Это дает нам основания считать эти предметы и явления организмами и организациями. В природе существует объективная целесообразность, или организованность, являющаяся результатом естественного отбора. Богданов понимал организованность как свойство целого быть больше суммы своих частей, причем, чем больше эта разница, тем выше степень организации.
Известный австрийский биолог-теоретик Л. фон Берталанфи разработал теорию открытых биологических систем, способных достигать своего конечного состояния, несмотря на некоторые нарушения условий своего существования. Он обратил внимание на существование моделей, принципов и законов, применимых к любым системам, независимо от их содержания. Физические, химические, биологические и социальные системы, по его мнению, должны функционировать по одним и тем же правилам. Он же дал первое определение системы как совокупности элементов, находящихся во взаимодействии.
37
Появление системного подхода говорит о зрелости современной науки. Оно было бы невозможно еще сто лет назад. Этот подход тесно связан с интегративным характером современного естествознания и проявляет себя в междисциплинарных исследованиях, занимающих все более почетное место в современной науке. Конечным пунктом системного исследования является формирование целостной, интегративной модели изучаемого объекта. Для этого отдельные компоненты анализируются не ради их собственного познания, а с целью их последующего сведения в единое целое. Не менее важным является изучение воздействия окружающей среды на целостность системы. При этом сам познавательный процесс также должен быть организован в соответствии с требованием целостности, нацелен на получение интегративного знания. Системный подход отражает единство научного знания, которое выражается в установлении связей и отношений между различными по сложности организации системами, в возможности целостного познания этих систем, во все более глубоком проникновении человека в тайны природы.
Если в системном подходе воплотилась идея всеобщей связи всех предметов и явлений мира, то в глобальном эволюционизме — идея развития мира.
Глобальный эволюционизм — это убеждение в том, что как Вселенная в целом, так и отдельные ее элементы не могут существовать, не развиваясь. При этом считается, что развитие идет по единому алгоритму — от простого к сложному путем самоорганизации.
Классическая концепция развития
Этот принципиально новый взгляд на мир был сформулирован лишь во второй половине XX в., хотя сама идея развития была присуща научному мировоззрению еще с начала XIX в. Тогда существовала классическая концепция развития, которая признавала, что весь мир находится в постоянном развитии, но живая природа развивается от простого к сложному, а неживая — от современного сложного состояния к самому простому состоянию хаоса. Классическая концепция развития нашла свое обоснование в эволюционной теории Ч. Дарвина, которая описывала эволюцию живой природы, а также в классической термодинамике, из которой вытекали представления об эволюции неживой материи.
Классическая термодинамика — это физическая наука, занимающаяся изучением взаимопревращения различных видов энергии. Она основывается на трех основных постулатах, или началах.
Первое начало термодинамики известно как закон сохранения энергии. Это фундаментальный закон, согласно которому важнейшая физическая величина — энергия — сохраняется неизменной в изолированной системе. Когда мы говорим о сохранении энергии, то имеем в виду механическую, тепловую и внутреннюю энергию, т.е. энергию, зависящую лишь от термодинамического состояния системы. Она складывается из движения атомов, энергии химических связей и других видов энергий, связанных с состоянием электронов в атомах и молекулах.
Согласно этому закону, в изолированной системе энергия может только превращаться из одной формы в другую, но ее количество всегда остается постоянным. Если система не изолирована, энергия может изменяться за счет обмена между частями системы или разными системами. Например, ежедневно мы сталкиваемся с тем, что горячий чайник, охлаждаясь, нагревает воздух.
Науке сегодня неизвестна ни одна причина, которая могла бы привести к нарушению данного закона. Иначе можно было бы построить вечный двигатель, создающий энергию из ничего. Поэтому первый закон термодинамики более известен в другой редакции: нельзя построить вечный двигатель первого рода, т.е. такую машину, которая совершала бы работу больше подводимой к ней извне энергии.
Существование вечного двигателя второго рода запрещает второе начало термодинамики: теплота не переходит самопроизвольно от холодного тела к более горячему. Поэтому невозможно построить такую машину, которая работала бы за счет переноса тепла от холодного тела к горячему. Это не запрещено первым началом термодинамики, но практически невозможно.
Второе начало термодинамики указывает на существование двух различных форм энергии — теплоты, связанной с неупорядоченным, хаотическим движением молекул (например, броуновское движение молекул, скорость которого напрямую связана с температурой), и работы, связанной с упорядоченным движением. Работу всегда можно превратить в эквивалентное ей тепло — вспомните, как наши предки получали огонь трением. В то же время тепло в эквивалентную ему работу полностью превратить нельзя, всегда останется некоторое количество теплоты, которое пропадет бесполезно. Другими словами, неупорядоченную форму энергии невозможно полностью перевести в упорядоченную. Мерой неупорядоченности, или мерой хаоса, системы в термодинамике является энтропия. Энтропия не бывает отрицательной, она всегда положи-
39
тельна. Исключением является случай, когда идеальный кристалл находится при температуре абсолютного нуля (но на этот счет существует третье начало термодинамики, говорящее о недостижимости абсолютного нуля, равного —273°С), что невозможно, так как это означало бы прекращение любого движения, в том числе движения атомов и элементарных частиц.
Иногда используется отрицательная величина энтропии — негэнтропия, которая является мерилом упорядоченности системы. Эта величина может быть только отрицательной. Рост негэнтропии соответствует возрастанию порядка, энтропии — росту хаоса.
Таким образом, в соответствии со вторым началом термодинамики в случае изолированной системы (не обменивающейся веществом, энергией или информацией с окружающей средой) неупорядоченное состояние не может самостоятельно перейти в упорядоченное. Представим себе закрытую систему, в которой вся энергия находится в упорядоченном состоянии (энергия-работа). Если в этой системе начнется процесс преобразования энергии, то мы увидим, что вся энергия-работа постепенно перейдет в энергию-тепло. Полученное тепло может быть использовано для совершения какой-либо полезной работы, но не полностью. Так появится энтропия. При следующем цикле преобразования работа опять полностью перейдет в тепло, но тепло вновь не сможет полностью превратиться в работу, и поэтому энтропия вновь увеличится. Так будет происходить до тех пор, пока вся энергия системы не превратится в тепло и не установится состояние термодинамического равновесия. Таким образом, в изолированной системе энтропия может только возрастать. Поэтому второе начало термодинамики также называют принципом возрастания энтропии. Эта более точная формулировка второго начала термодинамики утверждает, что при самопроизвольных процессах в системах, имеющих постоянную энергию, энтропия всегда возрастает. Иными словами, любая система стремится к состоянию термодинамического равновесия, которое можно отождествить с хаосом.