Ситуация в науке кардинально изменилась после возникновения и развития квантовой теории. Она привела к пересмотру всех представлений о роли динамических и статистических законов в отображении закономерностей природы. Был обнаружен статистический характер поведения отдельных элементарных частиц, никаких динамических законов в квантовой механике открыть не удалось. Таким образом, сегодня большинство ученых рассматривают статистические законы как наиболее глубокую, наиболее общую форму описания всех физических закономерностей.
После создания квантовой механики можно с полным основанием утверждать, что динамические законы представляют собой первый, низший этап в познании окружающего мира. Статистические законы более полно отражают объективные связи в природе, являясь более высокой ступенью познания. На протяжении всей истории развития науки мы видим, как первоначально возникшие динамические теории, охватывающие определенный круг явлений, сменяются по мере развития науки статистическими теориями, описывающими тот же круг вопросов с новой, более глубокой точки зрения. Только они способны отразить случайность и вероятность, играющие огромную роль в окружающем нас мире. Только они соответствуют современному (вероятностному) детерминизму.
Важной частью современной физической картины мира являются принципы современной физики — наиболее общие законы,
91
влияние которых распространяется на все физические процессы, все формы движения материи.
Принцип симметрии
В той или иной степени представление о симметрии есть у всех людей, так как этим свойством обладают самые разные предметы, играющие важную роль в повседневной жизни.
Обычно под симметрией (от греч. symmetria — соразмерность) понимают однородность, пропорциональность, гармонию какихлибо материальных объектов.
Наглядных, классических симметрий известно довольно много. Многим творениям человеческих рук в силу самых разных причин придается симметричная форма. Симметричны мячи, многие здания и сооружения, произведения искусства. Также симметричны многие человеческие действия. Симметрию можно обнаружить в живописи, музыке, поэзии, танце. В изобилии симметрии встречаются в природе (снежинка, дождевая капля, различные кристаллы и т.д.).
Все названные нами типы симметрии связаны с представлениями о структуре предметов, которая не меняется при проведении некоторых преобразований. Долгое время это были единственные симметрии, известные в науке. Но постепенно было осознано, что симметрии могут быть не только наглядными, связанными с геометрическими операциями. Существует целый ряд симметрий, связанных с описанием каких-либо изменений сложных естественных процессов. Эти симметрии не фиксируются в наблюдениях, они становятся заметны лишь в уравнениях, описывающих природные процессы. Поэтому физики, исследуя математическое описание той или иной физической системы, время от времени открывают новые, часто неожиданные симметрии, которые достаточно тонко «запрятаны» в математическом аппарате и совсем не видны тому, кто непосредственно наблюдает физическую систему.
Поэтому сегодня математическое исследование, основанное на анализе симметрии, также может стать источником выдающихся открытий в физике. Даже если заложенные в математическом описании симметрии трудно или невозможно представить себе наглядно, тем не менее они могут указать путь к выявлению новых фундаментальных принципов природы. Поиск новых симметрий стал главным средством, помогающим физику продвигаться к более глубокому пониманию мира.
С точки зрения физики симметричным является объект, который в результате определенных преобразований остается неизмен-
92
ным, инвариантным. Инвариантность — это неизменность какойлибо величины при изменении физических условий, способность не изменяться при определенных преобразованиях.
Симметрия в физике — это свойство физических величин, детально описывающих поведение системы, оставаться неизменными (инвариантными) при определенных их преобразованиях.
Симметрии в физике тесно связаны с законами сохранения физических величин — утверждениями, согласно которым численные значения некоторых физических величин не изменяются со временем в любых процессах или определенных классах процессов.
Так, закон сохранения энергии вытекает из однородности времени. Время симметрично относительно начала отсчета, все момента времени равноправны.
Закон сохранения импульса следует из однородности пространства. Все точки пространства равноправны, поэтому перенос системы никак не повлияет на ее свойства.
Закон сохранения момента импульса исходит из изотропности пространства. Свойства пространства одинаковы по всем направлениям, поэтому поворот системы не влияет на ее свойства.
Также имеет место целый ряд симметрий, действующих в микромире. Они описывают различные аспекты взаимопревращений элементарных частиц и лежат в основе таких законов сохранения, как закон сохранения электрического заряда, барионного и лептонного зарядов и ряда других законов, открытых в последнее время. Таким образом, XX в. подтвердил огромную роль принципа симметрии в физике.
Принцип дополнительностии соотношения неопределенностей
Принцип дополнительности является основополагающим в современной физике. Он был сформулирован в 1927 г. Н. Бором для объяснения феномена корпускулярно-волнового дуализма.
Прежде всего, Бор обратил внимание на то, что все предметы и явления, которые мы видим вокруг себя, и, конечно, измерительные приборы для регистрации элементарных частиц состоят из огромного множества микрочастиц. Иными словами, они являются макроскопическими системами, ничем иным они быть не могут. Сам человек — существо макроскопическое. Поэтому наши органы чувств не воспринимают микропроцессов. Понятия, которыми мы пользуемся для описания предметов и явлений окружающего мира, — это макроскопические понятия. С их
помощью можно легко опи-
93
сать любые физические процессы, проходящие в макромире. Вместе с тем применить эти понятия для описания микрообъектов полностью нельзя, так как они неадекватны процессам микромира.
Но других понятий у нас нет и быть не может. Поэтому, чтобы компенсировать неадекватность нашего восприятия и представлений об объектах микромира, нам приходится применять два дополняющих друг друга набора понятий, хотя с точки зрения классической науки они взаимно исключают друг друга, — это понятия частицы и волны. Только в совокупности они дают исчерпывающую информацию о квантовых явлениях.
Частным выражением принципа дополнительности является соотношение неопределенностей, сформулированное В. Гейзенбергом в 1927 г. Этот принцип наглядно иллюстрирует отличие квантовой теории от классической механики.
Если в классической механике мы допускаем, что можно абсолютно точно знать координаты, импульс и энергию частицы в любой момент времени, то в квантовой механике это невозможно. В соответствии с принципом неопределенности, чем точнее фиксирован импульс, тем большая неопределенность будет содержаться в значении координаты, и наоборот. Также соотносятся энергия и время. Точность измерения энергии обратно пропорциональна длительности процесса измерения. Причина этого — во взаимодействии прибора с объектом измерения.
Принцип суперпозиции
Принцип суперпозиции (наложения) — это допущение, согласно которому результирующий эффект представляет собой сумму эффектов, вызываемых каждым воздействующим явлением в отдельности. Одним из простых примеров принципа суперпозиции является правило параллелограмма, в соответствии с которым складываются две силы, воздействующие на тело. Этот принцип выполняется при условии, когда воздействующие явления не влияют друг на друга. Поэтому в ньютоновской физике он неуниверсален и во многих случаях справедлив лишь приближенно.
В микромире, наоборот, принцип суперпозиции — фундаментальный принцип, который наряду с принципом неопределенности составляет основу математического аппарата квантовой механики. Но, к сожалению, в квантовой теории принцип суперпозиции лишен той наглядности, которая характерна для механики Ньютона. Его интерпретируют так: пока не проведено измерение, бессмысленно спрашивать, в каком состоянии находится физическая система. Иными словами, до измерения система находится в суперпозиции двух возможных состояний, т.е. ее состояние неопределенно. Акт измерения переводит физическую систему скачком в одно из возможных состояний.
94
Принцип соответствия
Принцип соответствия был сформулирован Н. Бором в 1923 г., когда физики столкнулись с ситуацией, что рядом со старыми, давно оправдавшими себя теориями (например, с механикой Ньютона), появились новые теории (теория относительности Эйнштейна), описывающие ту же область действительности. Принцип соответствия утверждает преемственность физических теорий, в частности, то, что никакая новая теория не может быть справедливой, если она не содержит в качестве предельного случая старую теорию, относящуюся к тем же явлениям, поскольку старая теория уже оправдала себя в своей области.
Поэтому теории, справедливость которых была экспериментально установлена для определенной группы явлений, с построением новой теории не отбрасываются, но сохраняют свое значение для прежней области явлений как предельное выражение законов новых теорий. Выводы новых теорий в области, где справедлива старая теория, переходят в выводы старых теорий.