Ф и з и к о -х и м и ч е с к и е модели воспроизводят химическими или физическими средствами биологические структуры, функции или процессы и, как правило, являются далеким подобием моделируемого биологического явления. Начиная с 60-х гг. 19в. были сделаны попытки создания физико-химической модели структуры и некоторых функций клеток. Немецкий ученый М. Траубе (1867) имитировал рост живой клетки, выращивая кристаллы CuSO4 в водном растворе K4[Fe(CN)6]; французский физик С. Ледюк (1907), погружая в насыщенный раствор K3PO4 сплавленный CaCl2, получил - благодаря действию сил поверхностного натяжения и осмоса - структуры, внешне напоминающие водоросли и грибы. Смешивая оливковое масло с разными растворимыми в воде веществами и эту смесь в каплю воды, О. Бючли (1892) получал микроскопические пены, имевшие внешне сходство с протоплазмой; такая модель воспроизводила даже амебное движение. С 60-х гг. 19 в. предлагались также разные физические модели проведения возбуждения по нерву. В модели, созданной итальянским ученым К. Маттеуччи и немцем Л. Германом, нерв был представлен в виде проволоки, окруженной оболочкой из проводника второго рода. Присоединении оболочки и проволоки с гальванометром наблюдалась разность потенциалов, изменявшаяся при нанесении на участок «нерва» электрического «раздражения». Такая модель воспроизводила некоторые биоэлектрические явления при возбуждении нерва. Французский ученый Р. Лилли на модели распространяющейся по нерву волны возбуждения воспроизвел ряд явлений, наблюдаемых в нервных волокнах (рефрактерный период, закон «все или ничего», двустороннее приведение). Модель представляла собой стальную проволоку, которую помещали сначала в крепкую, затем в слабую азотную кислоту. Проволока покрывалась окислом, который восстанавливался при ряде воздействий; возникший в одном участке процесс восстановления распространялся вдоль проволоки. Подобные модели, показавшие возможность воспроизведения некоторых свойств и появлений живого посредством физико-химических явлений, основаны на внешнем качественном сходстве и представляют лишь исторический интерес.
Позднее более сложные модели, основанные на гораздо более глубоком количественном подобии, строились на принципах электротехники и электроники. так, на основе данных электрофизиологических исследований были построены электронные схемы, моделирующие биоэлектрические потенциалы в нервной клетке, ее отростке и синапсе. Построены также механические машины с электронным управлением, моделирующие сложные действия поведения. Однако, такие модели сильно упрощают явления, наблюдаемые в организме, и имеют большее значение для бионики, чем для биологии.
Значительно большие успехи достигнуты в моделировании физико-химических условий существования живых организмов, их органов и клеток. Так, подобраны растворы неорганических и органических веществ (растворы Рингера, Локка, Тироде и др.), имитирующие внутреннюю среду организма и поддерживающие существование изолированных органов или культивируемых внутри организма клеток.
Модели биологических мембран (пленка из природных фосфолипидов разделяет раствор электролита) позволяют исследовать физико-химические основы процессов транспорта ионов и влияние на него различных факторов. С помощью химических реакций, протекающих в растворах в автоколебательном режиме, моделируют колебательные процессы, характерные для многих биологических феноменов -дифференцировки, морфогенеза, явлений в сложных нейронных сетях и т.д.
М а т е м а т и ч е с к и е модели (математические и логико-математические описания структуры, связей и закономерностей функционирования живых систем) строятся на основе данных эксперимента или умозрительно, формализованно описывают гипотезу, теорию или открытую закономерность того или иного биологического феномена и требуют дальнейшей опытной проверки. Различные варианты подобных экспериментов выявляют границы применения математических моделей и дают материал для ее дальнейшей корректировки. «Проигрывание» математической модели биологического явления на ЭВМ позволяет предвидеть характер изменения исследуемого биологического процесса в условиях, трудно воспроизводимых в эксперименте. Математические модели позволяют в отдельных случаях предсказать некоторые явления, ранее неизвестные исследователю. Так, модель сердечной деятельности, предложенная голландскими учеными ван дер Полом и ван дер Марком, основанная на теории релаксационных колебаний, указала на возможность особого нарушения сердечного ритма, впоследствии обнаруженного у человека. Из математических моделей физиологических явлений следует назвать также модель возбуждения нервного волокна, разработанную английскими учеными А. Ходжкином и А. Хаксли. На основе теории нервных сетей американских ученых У. Мак-Каллока и У. Питса строятся логико-математические модели взаимодействия нейронов. Системы дифференциальных и интегральных уравнений положены в основу моделирования биоценозов (В. Вольтерра, А.Н. Колмогоров). Марковская математическая модель процесса эволюции построена О.С. Кулагиной и А.А. Ляпуновым. И.М. Гельфандом и М.Л. Цетлиным на основе теории игр и теории конечных автоматов разработаны модельные представления об организации сложных форм поведения. Показано, что управление многочисленными мышцами тела строится на основе выработки в нервной системе некоторых функциональных блоков - синергий, а не путем независимого управления каждой мышцей.
В настоящее время в области математического моделирования биообъектов и биосистем сложились работают следующие научные школы: Научно-исследовательский институт новых медицинских технологий Минздрава РФ, Тульский государственный университет, Институт математики НАН Украины. Разработаны: универсальный метод моделирования физиологических систем человека в норме и патологии на основе вычисления рекуррентных рядов; аппарат дифференциальных форм (внешней алгебры) применен для решения задач биоэнергоинформационного обмена и гемодинамики; для формирования алгоритмов моделирования процессов мышления и внутриорганного биоинформационного обмена, базирующихся на солитонном механизме волновой передачи, разработан метод решения канонических уравнений и др.
Список используемой литературы
1. Концепции современного естествознания: учебное пособие, под ред. А.В. Кокина, изд-во «Приор Эксперт бюро», - Москва, 1998 год
2. Проблемы развития химии под ред. Г.А. Фединой, - Ленинград, 1989 год
3. Концепции современного естествознания: учебник для вузов, под ред. А.П. Садохина, из-во Эксмо, – Москва, 2006 год.
4. Концепции современного естествознания. Хрестоматия для студентов гуманитарных ВУЗОВ, Высшая школа, изд-во Астрель, АСТ, 2004 год.
6.Моделирование в химии и биологии………………….………..стр.23
7.Бионеорганическая химия………………………….….………….стр.23