Смекни!
smekni.com

Термодинамика в существовании биологических систем (стр. 3 из 5)

СООТНОШЕНИЕ ОНЗАГЕРА

Между движущими силами и скоростями (потоками) должна, очевидно, существовать взаимосвязь, при которой увеличение (уменьшение) движущей силы вызывает соответствующее увеличение (уменьшение) скорости процесса. Это относится не только к химическим реакциям, но и к другим необратимым процессам.

Например, процессы переноса тепла и диффузии вещества через мембрану из одной фазы в другую включают движущие силы - градиенты температуры и концентраций, а потоки соответствуют переносу тепла или вещества между двумя фазами. Во всех этих случаях возрастание энтропии имеет вид

где Х - движущая сила, J - величина потока.

Если система находится вблизи равновесия, где величины движущих сил и потоков очень малы, то между ними имеется прямая пропорциональная зависимость:

J = LX, (8)

где L - постоянный линейный коэффициент.

Если в открытой системе вблизи равновесия протекают одновременно несколько процессов, то между ними существуют термодинамические соотношения, отражающие их взаимное влияние. Для двух процессов (J1 , X1) и (J2 , X2) эти соотношения имеют вид

J1 = L11X1 + L12X2 , (9)

J2 = L21X1 + L22X2 ,

где постоянные коэффициенты L11 , L22 отражают зависимость потока от своей силы, а коэффициенты L12 , L21 соответствуют взаимному влиянию силы одного процесса на поток другого процесса. Они носят название коэффициентов взаимности Онзагера. Вблизи равновесия

L12 = L21 . (10)

Теперь можно установить количественную связь между одновременно протекающими в клетке процессами, не зная их молекулярных механизмов.

Рассмотрим процесс активного переноса вещества через биологическую мембрану, который происходит за счет энергии сопрягающего метаболического процесса и поэтому может идти против градиента концентрации переносимого вещества. Тогда

J1 = L11X1 + L12X2 ,

J2 = L21X1 + L22X2 , L12 = L21 ,

где процесс (J1 , X1) сопряженного переноса идет против градиента силы X1 (J1 , X1 < 0) за счет энергии сопрягающего процесса (J2 , X2 > 0). Если сопряжение отсутствует, то L12 = L21 = 0 и процессы идут независимо друг от друга под действием только своих движущих сил

J1 = L11X1 , J2 = L22X2 .

В начальные моменты запуска системы большая скорость сопрягающего процесса J2 снижается до минимальных значений, одновременно растет величина X1 . В результате этих изменений устанавливается стационарное состояние, когда результирующий сопряженный поток обращается в нуль: J1 = 0. Если система полностью сопряжена, то и для сопрягающего потока устанавливается стационарное состояние J2 = 0. В этом случае в системе нет видимых изменений и вся энергия сопрягающего потока тратится на поддержание силы X1 . Можно мысленно представить себе колесо турбины в воде (X1), скорость ее движения (J1) и потока воды (J2). Эти соображения справедливы не только для активного переноса, но и для других случаев. Так, в митохондриях скорость окисления субстрата, то есть скорость движения (J2), связана с отношением АДФ / АТФ, то есть движущей силой X1 . В состоянии митохондрий, когда концентрация АДФ равна нулю и видимого образования АТФ не происходит (J1 = 0), вся энергия тратится на поддержание максимального уровня

. Добавление разобщителей уменьшает величину X1 , но тогда уже J1 ≠ 0, что приводит к ускорению сопрягающего потока.

Коэффициент трансформации энергии в сопрягающих процессах равен | J1X1 | / J2X2 и в митохондриях может достигать значений 80-90%. Применение уравнений Онзагера позволяет получить характеристики макромолекулярных комплексов - биологических трансформаторов энергии, не прибегая к детальному анализу механизмов их функционирования.

ТЕОРЕМА ПРИГОЖИНА

Мы уже видели, что в стационарном состоянии в открытой системе

причем каждый из членов deS / dt и diS / dt отличен от нуля. Возникает вопрос, можно ли по характеру изменений величины diS / dt во времени предсказать установление в открытой системе стационарного состояния. Ответ на этот вопрос дает теорема Пригожина, согласно которой в стационарном состоянии положительная функция diS / dt принимает минимальное положительное значение. Следовательно, по мере приближения к стационарному состоянию скорость образования энтропии внутри открытой системы монотонно уменьшается, постепенно приближаясь к своему минимальному положительному значению. В этом состоит критерий направленности необратимых процессов в открытых системах, находящихся вблизи равновесия, где справедливы соотношения Онзагера.

Из монотонного характера изменения TdiS / dt следует, что вблизи равновесия стационарное состояние не может представлять собой автоколебательный режим. Действительно, в этом случае переменные концентрации в системе (а следовательно, величины J и X ) изменяются периодически, что несовместимо с однонаправленным монотонным изменением TdiS / dt и ее постоянством в стационарной точке. Экспериментальные измерения скорости образования энтропии внутри системы можно проводить в калориметрах, изучая тепловые потоки, сопровождающие образование энтропии при необратимых изменениях в системе. В опытах на биологических объектах было показано, например, что скорость теплопродукции и интенсивность дыхания в процессе развития зародышей непрерывно уменьшаются начиная с первых стадий развития организма и достигают постоянных значений в стационарной фазе роста. Следует, однако, иметь в виду, что уровень термогенеза может меняться в ходе развития организма не только вследствие изменения величин движущих сил и потоков. Теплопродукция организма зависит и от состояния мембранных структур и степени сопряжения процессов окислительного фосфорилирования. Наконец, принципиальным является то, что биологические системы, вообще говоря, находятся вдали от равновесия, где пропорциональность между J и X (9) или соотношения взаимности (10) нарушаются. Это особенно важно для биохимических процессов, где наиболее характерны переходы с изменениями ∆G = = 1-2 ккал/мол, а линейные соотношения Онзагера справедливы при G ≤ 0,2 ккал/моль. В таких условиях в стационарных состояниях, далеких от равновесия, теорема Пригожина несправедлива (автоколебательный режим).

ТЕРМОДИНАМИКА АКТИВНОГО ТРАНСПОРТА

Мы рассмотрим систему активного транспорта одного иона (натрия), не сопряженного с переносом других веществ. Для простоты рассуждения будем считать, что можно выделить один метаболический процесс, приводящий в движение активный транспорт натрия.

Обозначим скорость активного транспорта катиона через

, скорость метаболизма через Jr , тогда

где Х+ - отрицательная разность электрохимических потенциалов катиона (идущего против градиента "своей" движущей силы), А - сродство метаболической реакции, обеспечивающей транспорт. В случае одной метаболической реакции (гидролиз АТФ) скорости потребления и производства всех метаболитов связаны стехиометрически. Поэтому для оценки скорости метаболизма можно взять, например, скорость потребления О2 в дыхании. Тогда сродство А может быть выражено как отрицательное изменение полного термодинамического потенциала метаболической реакции (гидролиз АТФ) на моль потребления О2 .

Помещая с обеих сторон мембраны одинаковые растворы

и изменяя трансмембранную разность потенциалов ∆φ можно найти из (11) феноменологические коэффициенты
,
, которые определяются из наклона соответствующих прямых ∆
и

Очевидно, в экспериментальных условиях для нахождения коэффициентов важно сохранить параметры системы и уметь направленно варьировать Na при постоянстве А. Опыты проводили на коже лягушки, где варьировали значения XNa путем изменения ∆φ. При этом сохранялся состав смывающей жидкости и концентрация натрия поддерживалась неизменной.

В прямых экспериментах была подтверждена линейная зависимость скорости активного транспорта

от ∆φ на коже лягушки, где ∆φ изменяли симметрично в области 0
80 мВ. Величину Jr можно определять по поглощению О2 с применением кислородных электродов. Оказалось, что при симметричных возмущениях потенциала соотношение между Jr и ∆φ было линейным в интервале 0
70 мВ. Была изучена также зависимость и J2 от наружной концентрации натрия в условиях постоянства его внутренней концентрации при постоянной нулевой разности электрических потенциалов (∆φ=0). В этих условиях также наблюдалась линейная зависимость скорости активного транспорта JNa и поглощения кислорода Jr от разности химических потенциалов ∆μNa на мембране. Однако если ХNa изменять путем варьирования внутренней концентрации натрия, то линейность уже не соблюдается. Это обусловлено уже изменениями в микроструктуре и составе самой мембраны.