Смекни!
smekni.com

Физо Покровский Том 2 (стр. 60 из 89)


Мышечные веретена. Мышечное веретено представляет собой небольшое продолговатое образование длиной несколько милли­метров, шириной десятые доли миллиметра, расположенное в тол­ще мышцы (рис. 14.21). В разных скелетных мышцах число вере­тен на 1 г ткани варьирует от нескольких единиц до сотни.

Каждое веретено покрыто капсулой. Внутри капсулы находится пучок мышечных волокон. Эти волокна называют интрафузальны-ми в отличие от всех остальных волокон мышцы, которые носят название экстрафузальных. Веретена расположены параллельно икстрафузальным волокнам, поэтому при растяжении мышцы нагрузка на веретена увеличивается, а при сокращении — умень­шается.

Различают интрафузальные волокна двух типов: 1) более тол­стые и длинные с ядрами, сосредоточенными в средней, утолщен­ной части волокна — ядерно-сумчатые и 2) более короткие и тон­кие с ядрами, расположенными цепочкой — ядерно-цепочечные. На интрафузальных волокнах спирально расположены чувстви­тельные окончания афферентных волокон группы Iа — так назы­ваемые первичные окончания, и чувствительные окончания аф­ферентных волокон группы II— так называемые вторичные окон­чания. Импульсация, идущая от веретен по афферентным волок­нам группы 1а, в спинном мозге моносинаптически возбуждает мотонейроны своей мышцы и через тормозящий интернейрон тор­мозит мотонейроны мышцы-антагониста (реципрокное торможе­ние). Афферентные волокна группы IIвозбуждают мотонейроны мышц-сгибателей и тормозят мотонейроны мышц-разгибателей. Имеются, однако, данные, что афферентные волокна группы II, иду­щие от мышц-разгибателей, могут возбуждать мотонейроны своей мышцы.

Веретена имеют и эфферентную иннервацию: интрафузальные мышечные волокна иннервируются аксонами, идущими к ним от у-мотонейронов. Эти так называемые у-эфферентные волокна под­разделяют на динамические и статические. В расслабленной мыш­це импульсация, идущая от веретен, невелика. Веретена реаги­руют импульсацией на удлинение (растяжение) мышцы, причем у первичных окончаний частота импульсации зависит главным обра-юм от скорости удлинения, а у вторичных — от длины мышцы (динамический и статический ответы). Активация у-эфферентов приводит к повышению чувствительности веретен, причем динами­ческие у-эфференты преимущественно усиливают реакцию на ско­рость удлинения мышцы, а статические — на длину. Активация у-эфферентов и без растяжения мышцы сама по себе вызывает импульсацию афферентов веретен вследствие сокращения интра­фузальных мышечных волокон. Показано, что возбуждение а-мо-тонейронов сопровождается возбуждением у-мотонейронов (а-у-коактивация). Уровень возбуждения у-системы тем выше, чем ин­тенсивнее возбуждены а-мотонейроны данной мышцы, т. е. чем Оольше сила ее сокращения. Таким образом, веретена реагируют иа два воздействия: периферическое — изменение длины мышцы, и


центральное — изменение уровня активации у-системы. Поэтому реакции веретен в условиях естественной деятельности мышц до­вольно сложны. При растяжении пассивной мышцы наблюдается активация рецепторов веретен, вызывающая рефлекс на растяже­ние. При активном сокращении мышцы уменьшение ее длины ока­зывает на рецепторы веретена дезактивирующее действие, а воз­буждение у-мотонейронов, сопутствующее возбуждению а-мото-нейронов, вызывает активацию рецепторов. Вследствие этого им-пульсация от рецепторов веретен во время движения зависит от нескольких факторов: соотношения длины мышцы, скорости ее укорочения и силы сокращения.

Таким образом, веретена можно рассматривать как непосред­ственный источник информации о длине мышцы и ее изменениях, если только мышца не возбуждена. При активном состоянии мыш­цы необходимо учитывать влияние у-системы. Во время активных движений у-мотонейроны поддерживают импульсацию веретен укорачивающейся мышцы, что дает возможность рецепторам реа­гировать на неравномерности движения как увеличением, так и уменьшением частоты импульсации и участвовать таким образом в коррекции движений.

Сухожильные рецепторы Гольджи. Они находятся в зоне сое­динения мышечных волокон с сухожилием и расположены по­следовательно по отношению к мышечным волокнам. Сухожиль­ные рецепторы слабо реагируют на растяжение мышцы, но воз­буждаются при ее сокращении. Интенсивность их импульсации примерно пропорциональна силе сокращения мышцы, что дает основание рассматривать сухожильные рецепторы как источник информации о силе, развиваемой мышцей. Идущие от этих рецеп­торов афферентные волокна относятся к группе lb. На спиналь-ном уровне они через интернейроны вызывают торможение мото­нейронов собственной мышцы и возбуждение мотонейронов мыш­цы-антагониста.

Информация от мышечных рецепторов по восходящим путям спинного мозга поступает в высшие отделы ЦНС, включая кору большого мозга, и участвует в кинестезии.

Суставные рецепторы. Они изучены меньше, чем мышечные. Известно, что суставные рецепторы реагируют на положение сус­тава и на изменения суставного угла, участвуя таким образом в системе обратных связей от двигательного аппарата и в управле­нии им.

Передача и переработка соматосенсорной информации. Чувст­вительность кожи и ощущение движения обусловлены проведе­нием в мозг сигналов от рецепторов по двум основным путям (трактам): лемнисковому и спинно-таламическому, значительно различающимся по своим морфологическим и функциональным свойствам. Существует и третий путь — латеральный тракт Мори-на, близкий по ряду характеристик к лемнисковой системе.

Лемнисковый путь. На всех уровнях этот путь состоит из от­носительно толстых и быстропроводящих миелинизированных


нервных волокон. Он передает в мозг сигналы о прикосновении к коже, давлении на нее и движениях в суставах. Отличительная особенность этого пути заключается в быстрой передаче в мозг наиболее точной информации, дифференцированной по силе и мес­ту воздействия. Первые нейроны этого пути находятся в спинно­мозговом узле, их аксоны в составе задних столбов восходят к тонкому (ядро Голля) и клиновидному (ядро Бурдаха) ядрам продолговатого мозга, где сигналы передаются на вторые нейроны лемнискового пути. Часть волокон, в основном несущих сигналы от суставных рецепторов, оканчивается на мотонейронах сегмен­тарного спинального уровня. Проприоцептивная чувствительность передается в спинном мозге также по дорсальному спинно-моз-жечковому, спинно-цервикальному и некоторым другим путям.

В продолговатом мозге в тонком ядре сосредоточены в основ­ном вторые нейроны тактильной чувствительности, а в клиновид­ном ядре — вторые нейроны проприоцептивной чувствительности. Аксоны этих нейронов образуют медиальную петлю и после пере­креста на уровне олив направляются в специфические ядра тала-муса — вентробазальный ядерный комплекс. В этих ядрах кон­центрируются третьи нейроны лемнискового пути. Их аксоны на­правляются в соматосенсорную зону коры большого мозга.

По мере перехода на все более высокие уровни изменяются некоторые важные свойства нейронов лемнискового пути. Значи­тельно увеличиваются (в продолговатом мозге в 2—30, а в коре большого мозга в 15—100 раз) размеры рецептивных полей нейро­нов. Ответы клеток становятся все более продолжительными: да­же короткое прикосновение к коже вызывает залп импульсов, длящийся несколько секунд. Отмечено появление так называемых нейронов новизны, реагирующих на смену раздражителя. Несмот­ря на увеличение размеров рецептивных полей, нейроны остаются достаточно специфичными (нейроны поверхностного прикоснове­ния, глубокого прикосновения, нейроны движения в суставах и нейроны положения или угла сгибания суставов). Для корковой части лемнискового пути характерна четкая топографическая ор­ганизация, т. е. проекция кожной поверхности осуществляется в кору большого мозга по принципу «точка в точку». При этом пло­щадь коркового представительства той или иной части тела опреде­ляется ее функциональной значимостью: формируется так назы­ваемый сенсорный гомункулюс (рис. 14.22).

Удаление соматосенсорной зоны коры приводит к нарушению способности локализовать тактильные ощущения, а ее электро­стимуляция вызывает ощущение прикосновения, вибрации и зуда. В целом роль соматосенсорной зоны коры состоит в интегральной оценке соматосенсорных сигналов, во включении их в сферу соз­нания, полисенсорный синтез и в сенсорное обеспечение выра­ботки новых двигательных навыков.

Спинно-таламический путь. Этот путь значительно отличается от лемнискового. Его первые нейроны также расположены в спинно­мозговом узле, откуда они посылают в спинной мозг медленнопрово-


дящие немиелинизированные нервные волокна. Эти нейроны име­ют большие рецептивные поля, иногда включающие значительную часть кожной поверхности. Вторые нейроны данного пути лока­лизуются в сером веществе спинного мозга, а их аксоны в соста­ве восходящего спинно-таламического пути направляются после перекреста на спинальном уровне в вентробазальный ядерный ком­плекс таламуса (дифференцированные проекции), а также в вент­ральные неспецифические ядра таламуса, внутреннее коленчатое тело, ядра ствола мозга и гипоталамус. Локализованные в этих ядрах третьи нейроны спинно-таламического пути лишь частично дают проекции в соматосенсорную зону коры.

Спинно-таламический путь с более медленной передачей аф­ферентных сигналов, со значительно менее четко дифференциро­ванной информацией о разных свойствах раздражителя и с менее четкой топографической локализацией служит для передачи тем­пературной, всей болевой и в значительной мере — тактильной чувствительности.

Болевая чувствительность практически не представлена на кор­ковом уровне (раздражение коры большого мозга не вызывает боли), поэтому считают, что высшим центром болевой чувстви­тельности является таламус, где 60 % нейронов в соответствую­щих ядрах .четко реагирует на болевое раздражение. Таким обра­зом, эта система играет важную роль в организации генерализо­ванных ответов на действие болевых, температурных и тактиль­ных раздражителей, сигналы о которых идут через структуры ствола, подкорковые образования и кору большого мозга.