Смекни!
smekni.com

Физо Покровский Том 2 (стр. 53 из 89)

Уменьшение или прекращение входа внутрь наружного сегмен­та Na+ приводит к гиперполяризации клеточной мембраны, т. е. возникновению на ней рецепторного потенциала. На рис. 14.7, Б показаны направления ионных токов, текущих через плазматичес­кую мембрану фоторецептора в темноте. Градиенты концентрации Na+ и К+ поддерживаются на плазматической мембране палочки активной работой натрий-калиевого насоса, локализованного в мембране внутреннего сегмента.

Гиперполяризационный рецепторный потенциал, возникший на мембране наружного сегмента, распространяется затем вдоль клет­ки до ее пресинаптического окончания и приводит к уменьшению скорости выделения медиатора (глутамата). Таким образом, фо-торецепторный процесс завершается уменьшением скорости выде­ления нейромедиатора из пресинаптического окончания фоторе­цептора.

Не менее сложен и совершенен механизм восстановления ис­ходного темнового состояния фоторецептора, т. е. его способно­сти ответить на следующий световой стимул. Для этого необходи­мо вновь открыть ионные каналы в плазматической мембране. Открытое состояние канала обеспечивается его связью с молеку­лами цГМФ, что в свою очередь непосредственно обусловлено по­вышением концентрации свободного цГМФ в цитоплазме. Это по­вышение концентрации обеспечивается утратой метародопсином IIспособности взаимодействовать с трансдуцином и активацией фер­мента гуанилатциклазы (ГЦ), способного синтезировать цГМФ из ГТФ. Активацию этого фермента вызывает падение концентра-


ции в цитоплазме свободного кальция из-за закрытия ионного ка­нала мембраны и постоянной работы белка-обменника, выбрасы­вающего кальций из клетки. В результате всего этого концентра­ция цГМФ внутри клетки повышается и цГМФ вновь связывается с ионным каналом плазматической мембраны, открывая его. Через открытый канал внутрь клетки вновь начинают входить Na+ и Са2+, деполяризуя мембрану рецептора и переводя его в «темно-вое» состояние. Из пресинаптического окончания деполяризован­ного рецептора вновь ускоряется выход медиатора.

Нейронысетчатки.Фоторецепторы сетчатки синапти-чески связаны с биполярными нейронами (см. рис. 14.6, Б). При действии света уменьшается выделение медиатора (глутамата) из фоторецептора, что приводит к гиперполяризации мембраны бипо­лярного нейрона. От него нервный сигнал передается на ганглиоз-ные клетки, аксоны которых являются волокнами зрительного нерва. Передача сигнала как с фоторецептора на биполярный ней­рон, так и от него на ганглиозную клетку происходит безымпульс­ным путем. Биполярный нейрон не генерирует импульсов ввиду предельно малого расстояния, на которое он передает сигнал.

На 130 млн фоторецепторных клеток приходится только 1 млн 250 тыс. ганглиозных клеток, аксоны которых образуют зритель­ный нерв. Это значит, что импульсы от многих фоторецепторов сходятся (конвергируют) через биполярные нейроны к одной ганг­лиозной клетке. Фоторецепторы, соединенные с одной ганглиозной клеткой, образуют рецептивное поле ганглиозной клетки. Рецеп­тивные поля различных ганглиозных клеток частично перекрывают друг друга. Таким образом, каждая ганглиозная клетка суммирует возбуждение, возникающее в большом числе фоторецепторов. Это повышает световую чувствительность, но ухудшает пространствен­ное разрешение. Лишь в центре сетчатки, в районе центральной ямки, каждая колбочка соединена с одной так называемой карли­ковой биполярной клеткой, с которой соединена также всего одна ганглиозная клетка. Это обеспечивает здесь высокое пространст­венное разрешение, но резко уменьшает световую чувствитель­ность.

Взаимодействие соседних нейронов сетчатки обеспечивается горизонтальными и амакриновыми клетками, через отростки ко­торых распространяются сигналы, меняющие синаптическую пе­редачу между фоторецепторами и биполярными клетками (гори­зонтальные клетки) и между биполярными и ганглиозными клет­ками (амакриновые клетки). Амакриновые клетки осуществляют боковое торможение между соседними ганглиозными клетками.

Кроме афферентных волокон, в зрительном нерве есть и цент­робежные, или эфферентные, нервные волокна, приносящие к сет­чатке сигналы из мозга. Полагают, что эти импульсы действуют на синапсы между биполярными и ганлиозными клетками сетчат­ки, регулируя проведение возбуждения между ними.

Нервные пути и связи в зрительной системе. Из сетчатки зри­тельная информация по волокнам зрительного нерва (II пара


черепных нервов) устремляется в мозг. Зрительные нервы от каж­дого глаза встречаются у основания мозга, где формируется их частичный перекрест (хиазма). Здесь часть волокон каждого зри­тельного нерва переходит на противоположную от своего глаза сторону. Частичный перекрест волокон обеспечивает каждое по­лушарие большого мозга информацией от обоих глаз. Проекции эти организованы так, что в затылочную долю правого полушария поступают сигналы от правых половин каждой сетчатки, а в левое полушарие — от левых половин сетчаток.

После зрительного перекреста зрительные нервы называют зрительными трактами. Они проецируются в ряд мозговых струк­тур, но основное число волокон приходит в таламический подкор­ковый зрительный центр — латеральное, или наружное, коленчатое тело (НКТ). Отсюда сигналы поступают в первичную проекцион­ную область зрительной зоны коры (стриарная кора, или поле 17 по Бродману). Вся зрительная зона коры включает несколько полей, каждое из которых обеспечивает свои, специфические функции, но получает сигналы от всей сетчатки и в общем сохра­няет ее топологию, или ретинотопию (сигналы от соседних участ­ков сетчатки попадают в соседние участки коры).

Электрическая активность центров зрительной системы. Элек­трические явления в сетчатке и зрительном нерве. При действии света в рецепторах, а затем и в нейронах сетчатки генерируются электрические потенциалы, отражающие параметры действующего раздражителя.

Суммарный электрический ответ сетчатки глаза на действие света называют электроретинограммой (ЭРГ). Она может быть зарегистрирована от целого глаза или непосредственно от сетчатки. Для этого один электрод помещают на поверхность роговой оболочки, а другой — на коже лица вблизи глаза либо на мочку уха. На электроретинограмме различают несколько харак­терных волн (рис. 14.8). Волна а отражает возбуждение внутрен­них сегментов фоторецепторов (поздний рецепторный потенциал) и горизонтальных клеток. Волна bвозникает в результате актива­ции глиальных (мюллеровских) клеток сетчатки ионами калия, выделяющимися при возбуждении биполярных и амакриновых нейронов. Волна с отражает активацию клеток пигментного эпите­лия, а волна d— горизонтальных клеток.

На ЭРГ хорошо отражаются интенсивность, цвет, размер и длительность действия светового раздражителя. Амплитуда всех волн ЭРГ увеличивается пропорционально логарифму силы света «и времени, в течение которого глаз находился в темноте. Волна d (реакция на выключение) тем больше, чем дольше действовал свет. Поскольку в ЭРГ отражена активность почти всех клеток сетчатки (кроме ганглиозных), этот показатель широко используется в клинике глазных болезней для диагностики и контроля лечения при различных заболеваниях сетчатки.

Возбуждение ганглиозных клеток сетчатки приводит к тому, что по их аксонам (волокнам зрительного нерва) в мозг устрем-


ляются импульсы. Ганглиозная клетка сетчатки — это первый нейрон «классического» типа в цепи фоторецептор — мозг. Опи­сано три основных типа ганглиозных клеток: отвечающие на вклю­чение (оп-реакция), на выключение (off-реакция) света и на то и другое (on-off-реакция) (рис. 14.9).

Диаметр рецептивных полей ганглиозных клеток в центре сет­чатки значительно меньше, чем на периферии. Эти рецептивные поля имеют круглую форму и концентрически построены: круглый возбудительный центр и кольцевая тормозная периферическая зона или наоборот. При увеличении размера светового пятнышка, вспыхивающего в центре рецептивного поля, ответ ганглиозной клетки увеличивается (пространственная суммация).

Одновременное возбуждение близко расположенных ганглиоз­ных клеток приводит к их взаимному торможению: ответы каждой клетки делаются меньше, чем при одиночном раздражении. В ос­нове этого эффекта лежит латеральное, или боковое, торможение. Рецептивные поля соседних ганглиозных клеток частично пере­крываются, так что одни и те же рецепторы могут участвовать в генерации ответов нескольких нейронов. Благодаря круглой фор­ме рецептивные поля ганглиозных клеток сетчатки производят так называемое поточечное описание сетчаточного изображения: оно отображается очень тонкой мозаикой, состоящей из возбуж­денных нейронов.

Электрические явления в подкорковом зрительном центре и зрительной зоны коры. Картина возбуждения в нейронных сло­ях подкоркового зрительного центра — наружного или латераль­ного, коленчатого тела (НКТ), куда приходят волокна зритель­ного нерва, во многом сходна с той, которая наблюдается в сет­чатке. Рецептивные поля этих нейронов также круглые, но мень­шего размера, чем в сетчатке. Ответы нейронов, генерируемые в ответ на вспышку света, здесь короче, чем в сетчатке. На уровне наружных коленчатых тел происходит взаимодействие афферент­ных сигналов, пришедших из сетчатки, с эфферентными сигналами из зрительной области коры, а также через ретикулярную форма­цию от слуховой и других сенсорных систем. Эти взаимодействия обеспечивают выделение наиболее существенных компонентов сен­сорного сигнала и процессы избирательного зрительного внимания.