По приведенной формуле рассчитывают абсолютное количество реабсорбируемого вещества. При вычислении относительной реаб-сорбции (% R) определяют долю вещества, подвергшуюся обратному всасыванию по отношению к количеству вещества, профильтровавшегося в клубочках:
Для оценки реабсорбционной способности клеток проксимальных канальцев важное значение имеет определение максимальной величины транспорта глюкозы (Тта). Эту величину измеряют при полном насыщении глюкозой системы ее канальцевого транспорта (см. рис. 12.5). Для этого вливают в кровь раствор глюкозы и тем самым повышают ее концентрацию в клубочковом фильтрате до тех пор, пока значительное количество глюкозы не начнет выделяться с мочой:
где F— клубочковая фильтрация, PG— концентрация глюкозы в плазме крови, aUG— концентрация глюкозы в моче; Тт— максимальный канальцевый транспорт изучаемого вещества. Величина Ттgхарактеризует полную загрузку системы транспорта глюкозы; у мужчин эта величина равна 375 мг/мин, а у женщин — 303 мг/мин при расчете на 1,73 м2 поверхности тела.
12.2.3.3. Канальцевая секреция
В выделении продуктов обмена и чужеродных веществ имеет значение их секреция из крови в просвет канальца против концентрационного и электрохимического градиентов. Этот дополнительный механизм выделения ряда веществ, помимо их фильтрации в клубочках, позволяет быстро экскретировать некоторые органические кислоты и основания, а также некоторые ионы, например К+. Секреция органических кислот (феноловый красный, ПАГ, диодраст, пенициллин) и органических оснований (холин) происходит в проксимальном сегменте нефрона и обусловлена функционированием специальных систем транспорта. Калий секре-тируется в конечных частях дистального сегмента и собирательных трубках.
Рассмотрим механизм процесса секреции органических кислот на примере выделения почкой ПАГ. При введении ПАГ в кровь человека ее выделение с мочой зависит от фильтрации в клубочках и секреции клетками канальцев (см. рис. 12.5). Когда секреция ПАГ (РАН) достигает максимального уровня (ТтрАН), она становится постоянной и не зависит от содержания ПАГ в плазме крови. Принцип секреторного процесса при транспорте органических соединений состоит в том, что в мембране клетки прокси-
мального канальца, обращенной к интерстициальной жидкости, имеется переносчик А, обладающий высоким сродством к ПАГ. В присутствии ПАГ образуется комплекс А—ПАГ, который обеспечивает перемещение ПАГ через мембрану, и на ее внутренней поверхности ПАГ освобождается в цитоплазму. При этом переносчик снова приобретает способность перемещаться к внешней поверхности мембраны и соединяться с новой молекулой ПАГ. Механизм транспорта состоит в том, что переносчик обменивает ПАГ на а-кетоглутарат на базальной плазматической мембране клетки проксимального канальца. Переносчик обеспечивает поступление ПАГ внутрь клетки. Угнетение дыхания цианидами, разобщение дыхания и окислительного фосфорилирования в присутствии динитрофенола снижают и прекращают секрецию. Уровень секреции зависит от числа переносчиков в мембране. Секреция ПАГ возрастает пропорционально увеличению концентрации ПАГ в крови до тех пор, пока все молекулы переносчика не насыщаются ПАГ. Максимальная скорость транспорта ПАГ достигается в тот момент, когда количество ПАГ, доступное для транспорта, становится равным количеству молекул переносчика А, которые могут образовывать комплекс А—ПАГ.
Поступившая в клетку ПАГ движется по цитоплазме к апикальной мембране и с помощью имеющегося в ней специального механизма выделяется в просвет канальца. Способность клеток почки к секреции органических кислот и оснований носит адаптивный характер. Если в течение нескольких дней часто инъецировать ПАГ (или пенициллин), то интенсивность секреции возрастает. Это обусловлено тем, что в клетках проксимальных канальцев при участии систем белкового синтеза вырабатываются вещества, являющиеся необходимыми компонентами процесса переноса через мембрану органических веществ.
Подобно секреции органических кислот, секреция органических оснований (например, холина) происходит в проксимальном сегменте нефрона и характеризуется Тт. Системы секреции органических кислот и оснований функционируют независимо друг от друга, при угнетении секреции органических кислот пробенецидом секреция оснований не нарушается.
Транспортв нефроне К+ характеризуется тем, что К+ не только подвергается обратному всасыванию, но и секретируется клетками эпителия конечных отделов нефрона и собирательных трубок. При реабсорбции из просвета канальца К+ поступает в эпителиальную клетку, где концентрация К+ во много раз выше, чем в канальцевой жидкости, и К+ диффундирует из клетки через базальную плазматическую мембрану в тканевую интерстициаль-ную жидкость, а затем уносится кровью. При секреции К+ поступает в клетку в обмен на Na+ через эту же мембрану с помощью натрий-калиевого насоса, который удаляет Na+ из клетки; тем самым поддерживается высокая внутриклеточная концентрация К+. При избытке К+ в организме система регуляции стимулирует его секрецию клетками канальцев. Возрастает проницаемость для К+
мембраны клетки, обращенной в просвет канальца, появляются «каналы», по которым К+ по градиенту концентрации может выходить из клетки. Скорость секреции К+ зависит от градиента электрохимического потенциала на этой мембране клетки: чем больше электроотрицательность апикальной мембраны, тем выше уровень секреции. При введении в кровь и поступлении в просвет канальца слабо реабсорбируемых анионов, например сульфатов, увеличивается секреция К+. Таким образом, секреция К+ зависит от его внутриклеточной концентрации, проницаемости для К+ апикальной мембраны клетки и градиента электрохимического потенциала этой мембраны. При дефиците К+ в организме клетки конечных отделов нефрона и собирательных трубок прекращают секрецию К+ и только реабсорбируют его из канальцевой жидкости. В этом случае К+ из просвета канальца транспортируется через апикальную плазматическую мембрану внутрь клетки, движется по цитоплазме в сторону основания клетки и через базаль-ную плазматическую мембрану поступает в тканевую жидкость, а затем в кровь. Приведенные данные указывают на высокую пластичность клеток этих отделов канальцев, способных под влиянием регуляторных факторов перестраивать свою деятельность, изменяя направление транспорта К+, осуществляя то его реабсорбцию, то секрецию.
Определение величины канальцевой секреции. Секреторную функцию проксимальных канальцев измеряют с помощью веществ, которые выделяются из организма главным образом посредством канальцевой секреции. В кровь вводят ПАГ (или диодраст) вместе с инулином, который служит для измерения клубочковой фильтрации. Величина транспорта (Г) органического вещества (ТрАН) при секреции (5) его из крови в просвет канальца определяется по разности между количеством этого вещества, выделенным почкой (UPAH*-V), и количеством попавшего в мочу вследствие фильтрации в (С1п-РРАН):
Приведенная формула характеризует величину секреции вещества почкой при любом уровне загрузки секреторной системы. В то же время мерой работы секреторного аппарата почки служит его максимальная загрузка.
При условии полного насыщения секреторного аппарата ПАГ определяется величина максимального канальцевого транспорта ПАГ (Тmран), которая является мерой количества функционирующих клеток проксимальных канальцев. У человека Тmpан составляет 80 мг/мин на 1,73 м2 поверхности тела.
12.2.4. Определение величины почечного плазмо- и кровотока
Непрямые методы измерения величины почечного кровотока основаны на оценке способности клеток почечных канальцев к секреции — практически полному извлечению из околоканальце-
вой жидкости (и соответственно из плазмы крови) ряда органических кислот и их секреции в просвет канальца. С этой целью используют ПАГ или диодраст, которые секретируются клетками почечных канальцев столь эффективно, что при невысокой их концентрации в артериальной крови она полностью очищается от этих веществ при однократном прохождении через почку (см. рис. 12.5). Используя те же обозначения, можно рассчитать очищение от ПАГ по формуле:
Сран= V*Upah/Ppah.
Это позволяет измерить величину эффективного почечного плазмотока, т. е. то количество плазмы, которое протекает по сосудам коркового вещества почки и омывает клетки проксимального сегмента нефрона. Так как эритроциты не содержат ПАГ, для расчета величины эффективного почечного кровотока (ERBF) необходимо ввести в формулу величину, учитывающую соотношение между эритроцитами и плазмой крови (показатель гемато-крита — Ht):
ERBF= CPAH/(1-Ht).
Выше шла речь об эффективном плазмотоке и кровотоке. Для определения общего кровотока и плазмотока через почки необходимо знать, сколько ПАГ остается в почечной крови. Так как считается, что ПАГ полностью извлекается из крови, протекающей по корковому веществу почки, то наличие в почечной вене небольшого количества ПАГ обусловлено тем, что часть крови минует корковое вещество почки и поступает в сосуды мозгового вещества. Доля кровотока через мозговое вещество почки составляет около 9 %, а кровоток во внутреннем мозговом веществе (сосочке) равен лишь 1 % от общего почечного кровотока.
У мужчин эффективный почечный плазмоток составляет около 655 мл/мин (на 1,73 м2 поверхности тела), общий плазмоток равен 720 мл/мин, а общий кровоток через почки — 1300 мл/мин. Чтобы определить, сколько жидкости из плазмы крови подвергается клубочковой фильтрации, рассчитывают фильтрационную фракцию (FF):