Смекни!
smekni.com

Статистические и динамические закономерности в природе (стр. 3 из 5)

Если в результате какого-либо взаимодействия часть электронов переходит от одного тела к другому, то одно тело получает отрицательный электрический заряд, а вто­рое — равный по модулю положительный заряд. При соприкосновении двух разноименно заряженных тел обычно электрические заряды не исчезают бесследно, а избыточное число электронов переходит с отрицатель­но заряженного тела к телу, у которого часть атомов имела не полный комплект электронов на своих обо­лочках.

Особый случай представляет встреча элементарных заряженных античастиц, например, электрона и позит­рона. В этом случае положительный и отрицательный электрические заряды действительно исчезают, анниги­лируют, но в полном соответствии с законом сохранения электрического заряда, так как алгебраическая сумма за­рядов электрона и позитрона равна нулю.

2.5. Закон сохранения энергии в механических процессах

Механическая энергия подразделяется на два вида: потенциальную и кинетическую. Потенциальная энер­гия характеризует взаимодействующие тела, а кинети­ческая — движущиеся. И потенциальная и кинетическая энергии изменяются только в результате такого взаимо­действия тел, при котором действующие на тела силы совершают работу, отличную от нуля.

Рассмотрим теперь вопрос об изменении энергии при взаимодействии тел, образующих замкнутую систему. Если несколько тел взаимодействуют между собой толь­ко силами тяготения и силами упругости и никакие вне­шние силы не действуют, то при любых взаимодействи­ях тел сумма кинетической и потенциальной энергий тел остается постоянной. Это утверждение называется зако­ном сохранения энергии в механических процессах.

Сумма кинетической и потенциальной энергий тел называется полной механической энергией. Поэтому закон сохранения энергии можно сформулировать так: пол­ная механическая энергия замкнутой системы тел, взаимо­действующих силами тяготения и упругости, остается по­стоянной.

Основное содержание закона сохранения энергии за­ключается не только в установлении факта сохранения полной механической энергии, но и в установлении воз­можности взаимных превращений кинетической и по­тенциальной энергий в равной количественной мере при взаимодействии тел.

Геофизическая энергия высвобождается в виде при­родных стихийных явлений (вулканизм, землетрясения, грозы, цунами и т.д.), обмена веществ в живых организ­мах (составляющих основу жизни), полезной работы по перемещению тел, изменению их структуры, качества, передачи информации, запасения энергии в различного рода аккумуляторах, конденсаторах, в упругой деформа­ции пружин, мембран.

Любые формы энергии, превращаясь друг в друга по­средством механического движения, химических реакций и электромагнитных излучений, в конце концов перехо­дят в тепло и рассеиваются в окружающее пространство. Это явление проявляется в виде взрывных процессов, горения, гниения, плавления, испарения, деформации, радиоактивного распада. Происходит круговорот энер­гии в природе, характеризующийся тем, что в космиче­ском пространстве реализуется не только хаотизация, но и обратный ей процесс — упорядочивание структуры, которые наглядно прослеживаются прежде всего в звез­дообразовании, трансформации и возникновении новых электромагнитных и гравитационных полей, и они сно­ва несут свою энергию новым «солнечным системам». И все возвращается на круги своя.

Таким образом, к середине XIX в. оформились зако­ны сохранения массы и энергии, которые трактовались как законы сохранения материи и движения. В начале XX в. оба эти закона сохранения подверглись коренному пере­смотру в связи с появлением специальной теории отно­сительности: при описании движений со скоростями, близкими к скорости света, классическая ньютоновская механика была заменена релятивистской механикой. Оказалось, что масса, определяемая по инерциальным свойствам тела, зависит от его скорости и, следователь­но, характеризует не только количество материи, но и ее движение. Понятие энергии тоже подверглось изме­нению: полная энергия оказалась пропорциональна мас­се (Е = mс2). Таким образом, закон сохранения энергии в специальной теории относительности естественным об­разом объединил законы сохранения массы и энергии, существовавшие в классической механике. По отдельно­сти эти законы не выполняются, т.е. невозможно оха­рактеризовать количество материи, не принимая во вни­мание ее движение и взаимодействие.

Эволюция закона сохранения энергии показывает, что законы сохранения, будучи почерпнутыми из опыта, нуждаются время от времени в экспериментальной про­верке и уточнении. Нельзя быть уверенным, что с рас­ширением пределов человеческого познания данный закон или его конкретная формулировка останутся спра­ведливыми. Закон сохранения энергии, все более уточ­няясь, постепенно превращается из неопределенного и абстрактного высказывания в точную количественную форму.

Глава 3. Динамические и статистические законы

Все физические законы делятся на две большие груп­пы: динамические и статистические.

Динамическими называют законы, отражающие объек­тивную закономерность в форме однозначной связи фи­зических величин. Динамическая теория — это теория, представляющая совокупность физических законов.

Статистические законы — это такие законы, когда любое состояние представляет собой вероятностную ха­рактеристику системы. Здесь действуют статистические распределения величин. Это означает, что в статисти­ческих теориях состояние определяется не значениями физических величин, а их распределениями. Нахожде­ние средних значений физических величин — главная задача статистических теорий. Вероятностные характе­ристики состояния совершенно отличны от характерис­тик состояния в динамических теориях. Статистические законы и теории являются более совершенной формой опи­сания физических закономерностей, так как любой извес­тный сегодня процесс в природе более точно описыва­ется статистическими законами, чем динамическими. Различие между ними в одном — в способе описания состояния системы.

Смена динамических теорий статистическими не оз­начает, что старые теории отменены и сданы в архив. Практическая их ценность в определенных границах ни­сколько не умаляется. При разговоре о смене теорий име­ется в виду, в первую очередь, смена глубоких физичес­ких представлений более глубокими представлениями о сущности явлений, описание которых дается соответству­ющими теориями. Одновременно со сменой физических представлений расширяется область применения теории. Статистические теории расширяются на больший круг яв­лений, недоступных динамическим теориям.

3.1. Особенности описания состояний в статистических теориях

Согласно общепринятой терминологии под динамическими закономерностями (или теориями) понимаются закономерности, в которых связи всех физических величин однозначны. В статистических закономерностях (или теориях) однозначно связаны только вероятности определенных значений тех или иных физических величин, а связи между самими величинами неоднозначны. Общность этих теорий проявляется, прежде всего, в том, что все они вводят в качестве основного понятия состояние физической системы. Различие же между ними - в определении этого состояния. Например, в классической механике, являющейся динамической теорией, состояние задается координатами и импульсами материальных точек. В другой динамической теории - классической (феноменологической, эмпирической) термодинамике - состояние системы определяется давлением, объемом и температурой некоторой массы вещества. Эволюция этих состояний описывается соответствующими уравнениями - уравнением движения (в форме второго закона Ньютона) в механике и уравнениями переноса в термодинамике неравновесных процессов.

В статистической механике состояние системы определяется совершенно иначе: не положениями и импульсами частиц, а вероятностями того, что та или иная частица имеет координаты и импульсы в определенном диапазоне возможных значений. Чтобы лучше представить себе специфику такого подхода, рассмотрим конкретный пример. Пусть в результате многократного измерения координаты x некоторой частицы получено N значений, в общем случае отличающихся друг от друга,

x1, x2, ..., xN

Чтобы наглядно представить эти значения, строят ступенчатый график, который называется гистограммой (рис.1). Для этого интервал [xmin, x max] на оси абсцисс, в который попадают все значения серии , разбивают на k одинаковых по ширине интервалов x i, (i =1, 2 ..., k) и на каждом из них строят прямоугольник, высота которого равна относительному числу Ni/N, попавших в соответствующий интервал, деленному на ширину интервала x. Тогда при достаточно больших Ni и N площадь каждого прямоугольника будет равна вероятности Pi = Ni / N попадания результатов измерения в соответствующий интервал x i.

Если теперь устремить N к бесконечности и одновременно ширину интервалов x - к нулю, то ступенчатый график - гистограмма - перейдет в плавную кривую r (x) (рис.1), которая называется плотностью вероятности (или функцией распределения) случайной величины x. Смысл этой функции остается прежним: ее значение в той или иной точке x определяет вероятность dP того, что измеренное значение случайной величины x попадет в малый интервал [x, x + x]

dP = r(x) dx

Таким образом, если в классической механике состояние N материальных точек (являющихся, например, теоретической моделью идеального газа) задается значениями N радиус-векторов ri и N импульсов pi, то в статистической механике состояние тех же N материальных точек определяется функцией распределения r (r1, p1; r2, p2; ... rN, pN; t), с помощью которой можно вычислить вероятность того, что координаты и импульсы этих N точек находится между r1 и r1+dr1, p1 и p1+dp1, ..., rN и rN+drN, pN и pN +dpN.