Разрыв большого количества слабых связей в молекуле белка приводит к разрушению её нативной конформации. Так как разрыв связей под действием различных факторов носит случайный характер, то молекулы одного индивидуального белка приобретают в растворе форму случайно сформировавшихся беспорядочных клубков, отличающихся друг от друга трёхмерной структурой. Потеря нативной конформации сопровождается утратой специфической функции белков. Этот процесс носит название денатурации белков. При денатурации белков не происходит разрыва пептидных связей, т.е. первичная структура белка не нарушается.
В денатурированном белке гидрофобные радикалы, которые в нативной структуре молекулы спрятаны внутри гидрофобного ядра, оказываются на поверхности. При достаточно высокой концентрации белка и отсутствии сильного отталкивающего заряда молекулы могут объединяться друг с другом гидрофобными взаимодействиями, при этом растворимость белка снижается и происходит образование осадка.
Компактная, плотная пространственная структура нативного белка при денатурации резко увеличивается в размерах и становится легко доступной для расщепления пептидных связей протеолитическими ферментами. Термическая обработка мясной пищи перед употреблением не только улучшает её вкусовые качества, но и облегчает её ферментативное переваривание в пищеварительной системе. Кроме того, денатурирующим действием на пищевые белки обладает и кислая среда желудка, вызывающая денатурацию тех белков, которые не подвергались предварительной температурной обработке, а также оказывает денатурирующее действие на белки микроорганизмов, попавших в желудок с пищей.
Денатурацию белков вызывают факторы, способствующие разрыву гидрофобных, водородных и ионных связей, стабилизирующих конформацию белков:
Рис. 2.1 - Структура нативной молекулы белка (в центре) и трёх денатурированных молекул этого же белка.
Детергенты (от лат. detergere — мыть, очищать) представляют собой поверхностно-активные вещества с моющим действием, которое обусловлено их способностью образовывать в воде устойчивые коллоидные растворы. Поверхностная активность детергентов, то есть способность адсорбироваться на границе раздела фаз (типа вода—воздух или вода—масло), связана с амфифильностью их молекул. Амфифильными (от греч. фило — любящий и амфи — обоих) называют вещества, в молекулах которых имеются четко разграниченные гидрофильные и гидрофобные области, благодаря чему такие молекулы обладают сродством не только по отношению к воде, но и к неполярным органическим растворителям.
В воде молекулы детергентов стремятся ассоциировать друг с другом, давая мицеллы (рис. 3.1). Эти агрегаты состоят из большого числа детергентных молекул (обычно от нескольких десятков до нескольких сот), ориентированных в мицелле таким образом, что их неполярные группы формируют внутреннее гидрофобное ядро мицеллы, а гидрофильные полярные группировки находятся на ее поверхности и контактируют с окружающими молекулами воды.
Именно благодаря наличию гидрофобного ядра мицеллы способны солюбилизировать, то есть переводить в раствор неполярные вещества, практически нерастворимые в воде. В качестве параметров, характеризующих способность детергентов к мицеллообразованию, обычно используют критическую концентрацию мицеллообразования (ККМ) и число агрегации. ККМ — это та концентрация, при которой детергент начинает образовывать мицеллы. До этого он находится в воде в мономерной форме в состоянии истинного раствора. Число агрегации показывает, сколько молекул детергента приходится на одну мицеллу.
В настоящее время известно несколько сот различных детергентов. Все они разделяются на два основных класса: ионные и неионные детергенты в зависимости от наличия или отсутствия заряженных групп в гидрофильной области их молекул.
Неионогенные ПАВ растворяются в воде, не ионизируясь. Растворимость неионогенных ПАВ в воде обуславливается наличием в них функциональных групп. Как правило, они образуют клатраты в водном растворе вследствие возникновения водородных связей между молекулами воды и атомами кислорода полиэтиленгликолевой части молекулы ПАВ. К ним относятся: полигликолевые эфиры жирных спиртов и кислот, полигликолевые эфиры амидов жирных кислот, ацилированные или алкилированные поли гликолевые эфиры алкиламидов. Ярким представителем неионогенных ПАВ является Тритон Х-100 . Добавление этого сурфактанта в раствор зачастую улучшает растворимость белка, при этом не вызывая его денатурацию.
Основную долю в фармацевтических, косметических, медицинских и биохимических исследованиях составляют ионные детергенты, с их помощью влияют на энергетическое состояние и структуру межфазной поверхности и через неё регулируют свойства микрогетерогенных систем.
Благодаря высокой поверхностной активности и способности к растворению белков и липидов, а также способности вызывать диссоциацию и денатурацию белков, инактивацию вирусов и токсинов именно ионные детергенты широко применяются для приготовления медицинских фармацевтических препаратов (например, бактерицидных и дезинфицирующих), а также дерматологических и косметических средств.
Ионные детергенты по типу заряда делятся на катионные, анионные, и цвиттерионные (амфотерные).
Анионные ПАВ - это соединения, которые в водных растворах диссоциируют с образованием анионов, обусловливающих поверхностную активность. Среди них наибольшее значение имеют линейный алкилбензосульфонат, сульфаты и сульфоэфиры жирных кислот. Широко используемым примером является детергент, додецилсульфат натрия (рис. 3.2). Катионные ПАВ в водном растворе диссоциируют с образованием катионов, определяющих поверхностную активность. Среди катионных ПАВ наибольшее значение имеют четвертичные аммониевые соединения, имидазалины и жирные амины. Одним из ярких представителей катионных детергентов является цетавлон (ЦТАБ) (рис. 3.3).Детергенты изменяют конформацию белка, в связи с этим исследование взаимодействия ПАВ, как ДСН и ЦТАБ, является важной задачей.
Гидрофобные радикалы белков взаимодействуют с гидрофобными частями детергентов, что изменяет конформацию белков. Денатурированный под действием детергентов белок обычно остаётся в растворённом виде, так как гидрофильные части денатурирующего вещества удерживают его в растворе. К наиболее известным детергентам относят различные мыла (рис. 4.1).
Рис. 4.1 - Денатурация белков с помощью детергентов.
Эффективными денатурирующими агентами являются ионные детергенты, среди которых в биохимической практике особенно часто используют анионный детергент додецилсульфат натрия (ДСН) и катионный детергент цетилтриметиламмонийбромид (ЦТАБ, цетавлон).
Взаимодействие белков с детергентами может изучаться различными методами: дифференциальной сканирующей калориметрией (DSC), с помощью кругового дихроизма, флуоресценции и УФ-спектроскопии поглощения.
Рассмотрим на примереисследования денатурации сывороточного альбумина человека (САЧ) под действием ионных детергентов по анализу собственной триптофановой флуоресценции белка.
На рис. 4.2 изображены зависимости интенсивности в максимуме спектров триптофановой флуоресценции сывороточного альбумина человека от концентрации ДСН для различных значений pH. Видно, что в растворах с ДСН триптофановая флуоресценция сывороточного альбумина человека тушится. Тушение триптофановой флуоресценции белка в растворах с ДСН объясняется его денатурацией, вследствие которой при разворачивании белковых глобул хромофорная группа триптофана альбумина становится более доступной для молекул воды, тушащих её свечение.