Покровы гидробиоитов полупроницаемы. Находясь в воде они должны противостоять физико-химическим силам выравнивания осмотических и солевых градиентов, а временно оказываясь в воздушной среде избежать потери влаги. Для противостояния силам выравнивания водные организмы вырабатывают ряд адаптаций, Направленных, с одной стороны, на активное поддержание нужных градиентов, а с другой- уменьшение до минимума физико-химических эффектов, в частности за счет снижения проницаемости покровов. Последний путь, энергетически более экономный, используется в ограниченных пределах, поскольку растущая изоляция от среды осложняет процессы обмена веществ с нею.
Процессы регуляции водно-солевого обмена обеспечиваются работой выделительной системы, рядом морфологических и поведенческих адаптаций. Приспособление к снижению влагоотдачи и некоторые другие предохраняют гидробиоитов от гибели вне воды, например в приливно-отливной зоне, в пересыхающих водоемах, при периодических выходах на сушу. Ряд адаптаций обеспечивает защиту водных организмов от осмотического обезвоживания и обводнения, создающих угрозу механического повреждения клеток. В соответствии с этим решается задача регулирования и концентрации соотношения отдельных ионов в клетках тела. Совершенством адаптаций, обеспечивающих стабилизацию водного и солевого обмена, определяется их способность существовать в водах различной солености и выживать в осматически неустойчивой среде.
Помимо расширительного понимания дыхания как всякоговысвобождающего энергию биологического окисления, есть и более узкое, распространяющееся только на процессы, связанные с поглощением кислорода. Аэробное дыхание в воде сложнее, чем на суше. У наземных животных влага на дыхательных поверхностях нормальное и несколько меньшее количество растворееного кислорода. Если вода, омывающая дыхательные структуры гидробиоитов, насыщена кислородом, то условия их дыхания не хуже, а даже лучше, чем у наземных форм. Однако, гораздо чаще содержание кислорода в воде немного ниже нормального и в таких случаях распираторная обстановка для гидробиоитов крайне неблагоприятна. При этом следует учесть, что концентрация кислорода снижается в результате жизнедеятельности самих гидробиоитов, и не всегда достаточно быстро восстанавливается за счет тех или иных внутриводоемных процессов. Сложность распираторных условий в воде обусловила выработку у гидробиоитов ряда морфологических, физиологических и биохимических реакций организма, обеспечивающих нужный уровень интенсивности дыхания в более или менее широком интервале концентраций растворенного кислорода. Регулируя интенсивность газообмена, гидробиоиты маневренно оптимизируют свою энергетику, экономичность процессов реализации программы роста и развития. В условиях крайнего дефицита кислорода гидробиоиты предельно снижают свою активность и некоторое время выживают благодаря использования минимума энергии. Небольшое число гидробиоитов постоянно существуют в отсутствие растворенного кислорода, извлекая его из химических соединений и добывая энергию другими способами.
Росту организмов сопутствует их развитие -поступательное изменение всей организации тела, направленное на достижение оптимального репродуктивного состояния, обеспечение необходимой эффективности размножения. В ходе онтогенеза, перестраиваясь структурно и функционально, организмы достигают репродуктивной зрелости. Чем больше образуется потомков и выше их выживаемость, тем успешнее реализуется жизненная стратегия вида -максимизация в биосфере, свойственной ему формы трансформации веществ и энергии, универсализация своего образа жизни, предельное усиление своей биогеохимической функции на Земле. Поскольку такая тенденция свойственна всем видам, это усиливает их конкуренцию на материальные и энер-
гетические ресурсы биосферы, расширяет ресурсную базу жизни, интенсифицирует в эволюционном аспекте биологический круговорот веществ и поток энергии в биосфере.
<Водные биоресурсы и их
рациональное использование.>
В результате роста и размножения гидробиоитов в водемах происходит непрерывное образование биомассы. Это экосистемное явление называют биологической продуктивностью, сам процесс образования биомассы -биологическим продуцированием, а новообразованную биомассу -биологической продукцией. Биологическая продукция -только часть биоорганической продукции -всего органического вещества, содаваемого организмами в процессе своей жизнедеятельности. Биопродуктивность экосистем реализуется в форме образования организмов, полезных, безразличных или вредных для человека. В связи с этим исходя из текущих запросов практики можно говорить о биохозяйственной продукции -биомассе организмов, имеющих в настоящее время промысловое значение. Вне зависимости от интересов практики различают продукцию первичную и вторичную. Первая
представляет собой результат биосинтеза органического вещества из неорганического в процессе жизнедеятельности гидробиантов-автотрофов. Вторичная продукция образуется в процессе трансформации уже имеющегося органического вещества организмами-гетеротрофами.
Биопродуктивность гидросистем можно рассматривать в двух планах: природном (биосферном) и социально экономическом. В первом случае результаты продуцирования безотносительно к интересам человека, как одну из особенностей круговорота веществ в экосистеме, как одну из функций экосистем -блоков биосферы. С социально-экономической точки зрения биопродуктивность характеризуется величиной вылова гидробиантов, используемых человеком. В этом случае продуктивность определяется как свойствами самих эксплуатируемых экосистем, так и формой их хозяйственного освоения.
Организмы, используемые в качестве объектов промысла, образуют биологические ресурсы водоемов. В историческом процессе становления природы для человека все большее число
гидробиантов вовлекается в сферу общественного производства и становится биоресурсами людей. Гидробианты в воспроизводство которых вкладывается труд -это уже не биоресурсы, а возделываемое сырье.
Из огромного числа гидробиоитов только очень немногие представители флоры и фауны используются человеком в качестве биологического сырья. Этим в значительной мере объясняется тот факт, что водные растения и животные составляют 3% в пище людей, хотя первичная продукция гидросферы только в 3 раза меньше первичной продукции суши. Поэтому перспективная оценка биологических ресурсов гидросферы должна исходить нетолько из учета возможного вылова объектов, добываемых в настоящее время.
В отличие от полезных ископаемых биологические ресурсы относятся к самовоспроизводящимся. Следовательно, их величина в гидросфере определяется не количеством имеющихся промысловых организмов, а их приростом, т.е. продукцией. Мерой реализации этой продукции служит промысел.
Объем устойчивого промысла водных организмов определяется величиной их естественного воспроизводства. Поэтому промысел не должен превысить естественных природных популяций и учитывать особенности их воспроизводства (сроки, места, орудия лова и т.д.). Охрана и повышение эффективности естественного воспроизводства представляют собой важную меру укрепления сырьевой базы промысла, равно как и обогащение водоемов новыми промысловыми объектами за счет акклиматизации.
Промысел водных организмов не всегда легко отличить от "урожая" при искусственном разведении, т.к. существует множество переходных форм между этими двумя видами биосырья.
В настоящее время мировой промысел гидробиоитов составляет около 20% животных белков, потребляемых человеком. До начала 70-х годов он быстро возрастал, затем стабилизировался. Среди рыб значительную долю в промысле составляют сельдевые, тресковые, скумбриевые и ставридовые. В меньшем количестве добываются тунцовые, мерлузовые и комбаловые, еще меньше отлавливаются лососевые.
Среди нерыбных объектов, добываемых в водоемах в настоящее время, первое место по массе занимают моллюски. Из них
в наибольшем количестве добываются двустворчатые моллюски, в значительном количестве -головоногие моллюски (больше половины из них -кальмары). Из ракообразных наибольшую роль в промысле играют крабы и креветки.
Мировой промысел гидрофитов основан преимущественно на добыче красных и бурых водорослей. В гораздо меньшем количестве добывают зеленые. Значительная часть водорослей используется для йода и других технических и медицинских продуктов.
В настоящее время уровень использования гидробиоитов в отношении большинства традиционных объектов промысла достиг величин, близких к предельным. Во многих случаях наблюдается перелов гидробиоитов; что означает, что воспроизводительная способность их популяций уже не может компенсировать убыль в результате промысла. В 1770г. был убит последний экземпляр замечательного растительноядного млекопитающего -стеллеровой (морской) коровы. Почти исчез в наше время гренландский кит, взятый под охрану слишком поздно, под угрозой исчезновения находится синий кит. Среди рыб наблюдается перелов многих легко поддающихся добыче камбал, сельдей. В ряде районов в чрезвычайно напряженном состоянии находятся запасы крабов. Поэтому с необычайной остротой встает вопрос об охране и повышении естественного воспроизводства биоресурсов.
Серьезный вред воспроизводству промысловых гидробиоитов может наносить гидротехническое строительство, в частности сооружение плотин, перерезающих естественные миграционные пути рыб. Например, гидростроительство на Волге и Куре резко нарушило условия естественного размножения осетровых, в связи с чем пришлось принять меры по организации искусственного воспроизводства. Огромное количество молоди гибнет, попадая в оросительные системы и в турбины гидроэлектростанций. Для предупреждения захода молоди в каналы оросительной системы,в турбины электростанций создают различные заградители, в частности электрические.