Смекни!
smekni.com

Взаимодействие низкомолекуляных соединений с мембранами (стр. 1 из 8)

Взаимодействие низкомолекуляных соединений с мембранами: пространственное разделение, проницаемость и электрические эффекты


Введение

Биомембрана — это не просто пассивный барьер, разграничивающий клетки или органеллы и препятствующий свободному переносу растворенных веществ между водными компартментами. Мы остановимся именно на функции мембраны как барьера. Основной акцент будет сделан на взаимодействии между фосфолипидным бислоем и растворенными в окружающей его водной среде низкомолекулярными соединениями — как ионами, так и неэлектролитами. Вначале мы обсудим связывание таких молекул с мембраной, причем под связыванием будем понимать как адсорбцию на поверхности, так и проникновение внутрь бислоя. Любое попавшее в бислой вещество может диффундировать через него и выйти с противоположной стороны. В этих рамках здесь обсуждается проблема проницаемости мембраны для неэлектролитов. Чтобы понять, каков механизм взаимодействия ионов с мембраной, необходимо рассмотреть общий профиль электрической составляющей потенциальной энергии мембраны. Знание электрической составляющей свободной энергии иона, находящегося вблизи мембраны или внутри ее, чрезвычайно важно не только для понимания того, как связываются с поверхностью мембраны ионы двух- или одновалентных металлов, но и для оценки локальных значений рН на поверхности мембраны, а также для моделирования механизмов регуляции ферментов и ионных каналов с помощью изменения электрического напряжения на бислое.


1. АНАЛИЗ АДСОРБЦИИ ЛИГАНДОВ НА БИСЛОЕ

Перед тем как приступить к изложению материала, обсудим, каким образом можно описать адсорбцию лигандов на поверхности бислоя. Необходимость такого описания возникает при анализе многочисленных экспериментальных ситуаций, при этом можно использовать несколько подходов. Здесь мы подробно рассмотрим адсорбцию на бислое ионов и амфифильных молекул, хотя такой же анализ применим для любых молекул, способных связываться с поверхностью бислоя. В связывании низкомолекулярных соединений с белками обычно участвуют вполне определенные специфические центры. Изучая связывание молекул с белком, можно определить 1) число центров связывания на молекуле белка; 2) сродство центра связывания к лиганду; 3) степень взаимодействия между центрами связывания, т.е. кооперативность. Экспериментально все эти характеристики можно получить из анализа кривой связывания, т.е. зависимости количества связанного лиганда от концентрации свободного лиганда. Анализ такой зависимости относительно несложен, поскольку имеется лишь фиксированное число центров связывания, которые могут быть либо заняты, либо свободны. Такой же подход применим при изучении связывания каких-либо лигандов с определенным центром на мембране.

Анализ адсорбции молекул на поверхности липидного бислоя, однако, гораздо более сложен, поскольку в этом случае понятие центра связывания не столь однозначно. Подход, который следует использовать в этом случае, и информация, которую можно получить, зависят от конкретной экспериментальной ситуации. Рассмотрим несколько таких подходов.

Равновесное распределение

Данная модель рассматривает мембрану как отдельную фазу. Небольшие молекулы распределяются между водной фазой и мембраной в соответствии с коэффициентом распределения Кр,


где Ссвяз и Ссвоб— концентрации связанного с мембраной и свободного лиганда соответственно. В такой модели насыщение отсутствует, т. е. концентрация связанного лиганда будет расти до бесконечности с увеличением его концентрации в водной фазе. Естественно, это нереальная ситуация, и данная модель применима только в том случае, если количество связанного лиганда относительно мало. Отметим, что в данной модели не содержится никакой информации о центрах связывания. При концентрациях лиганда, далеких от насыщения, т. е. в условиях, когда заполнена лишь небольшая доля потенциальных центров связывания, практически любое уравнение адсорбции сводится к уравнению.

Коэффициент распределения можно выразить несколькими способами. Проще всего представить концентрацию связанного лиган-да как поверхностную концентрацию NCB„, имеющую размерность моль/см2, и тогда коэффициент распределения /3 имеет размерность длины:

Если N. Тогда, если пренебречь краевыми эффектами, 10000 молекул липида в квадратной решетке дадут 20000 возможных пар перекрывающихся центров. Аккуратное вычисление числа доступных центров связывания представляет собой основную проблему при получении правильного выражения для изотермы адсобрции.

Связывание с п лигандами

Проблему правильного подсчета перекрывающихся центров связывания можно частично решить, рассмотрев простое равновесное связывание лиганда с п молекулами фосфолипида. В этом случае образование комплекса между лигандом L и фосфолипидами Р можно представить в следующем виде:

Такой способ с успехом применялся, например, для анализа связывания Са2+ с фосфатидилхолиновым бислоем с п = 2, которое

нельзя описать с помощью простой изотермы Лэнгмюра. Получаемое в рамках такой модели уравнение показывает, что график Скэтчарда должен быть не линейным, а вогнутым.

Учет формы лиганда

Решить до конца эту задачу не удается даже с помощью приведенного выше анализа, поскольку он не учитывает форму лиганда. Если рассматривать мембрану как двумерную решетку, то для полного анализа нужно рассчитать укладку на такой плоскости крупных лигандов определенной формы, каждый из которых способен связываться с несколькими определенным образом расположенными друг относительно друга узлами решетки. Например, молекула, имеющая форму стержня, будет связываться с расположенными линейно центрами решетки. Каждая связавшаяся с решеткой молекула лиганда будет в зависимости от формы блокировать определенное число дополнительных центров связывания. Полный анализ, учитывающий как перекрывание центров связывания, так и форму лиганда, хотя и довольно сложен, был все же проделан. Такой анализ можно также распространить на лиганды, которые способны проникать внутрь мембраны и поэтому будут занимать дополнительные узлы решетки.

Основной вывод состоит в том, что формальный термодинамический анализ связывания с мембраной даже небольших молекул лиганда может оказаться весьма сложным, и часто для этого недостаточно простого применения стандартных уравнений. Как мы увидим, помимо перекрывания центров связывания, ограниченного стерическими взаимодействиями, для полного описания адсорбции на поверхности мембраны заряженных лигандов необходимо учитывать также и электростатические взаимодействия.


2. КЛАССЫ ЛИГАНДОВ, СПОСОБНЫХ ВЗАИМОДЕЙСТВОВАТЬ С ЛИПИДНЫМ БИСЛОЕМ

Литература, описывающая взаимодействие низкомолекулярных соединений с биологическими и модельными мембранами, чрезвычайно обширна. Для простоты разделим эти соединения в соответствии с их полярностью на следующие классы: неполярные, ам-фифильные и ионные. С учетом такой классификации кратко рассмотрим некоторые работы, посвященные взаимодействию лигандов с мембранами.

Класс I: неполярные вещества

Липидный бислой, вообще говоря, можно рассматривать как двумерную жидкость, поэтому определенный интерес представляет способность этой жидкости растворять небольшие неполярные молекулы. Такие данные весьма ценны для понимания того, как гидрофобные домены белков взаимодействуют с бислоем. В качестве примера можно привести исследование раствора гексана в диолеил-фосфатидилхолине. Вероятнее всего, в большинстве случаев такие неполярные молекулы, как гексан, локализуются в центре бислоя. Такая локализация для гексана была выявлена с помощью метода нейтронной дифракции, хотя при более высоких концентрациях гексана вполне возможны более сложные варианты взаимодействия.

Класс II: аифифильиые молекулы

Это, безусловно, наиболее обширная из исследованных группа молекул. В нее входят многие анестетики, лекарственные препараты, фармакологическая активность которых зависит от их способности взаимодействовать с мембранами. К этой категории также можно отнести целый ряд антибиотиков и другие природные соединения, в частности соли желчных кислот и жирные кислоты. Кроме того, амфифильными свойствами обладают многие используемые для изучения мембран флуоресцентные и спиновые метки. Все эти соединения имеют четко различимые полярные и неполярные части и эффективно взаимодействуют с поверхностью мембраны. Некоторые из таких амфифильных соединений при достаточно больших концентрациях действуют на мембрану как детергенты и разрушают бислой. Показано также, что некоторые амфифильные вещества даже в умеренных концентрациях оказывают на биомембраны повреждающее действие.

Анестетики

Существует много типов анестетиков — от атомарного ксенона до сложных органических гетероциклических соединений. Вообще говоря, фармакологическая активность анестетиков хорошо коррелирует с их коэффициентом распределения в системе масло/вода. Это позволяет предположить, что механизм их действия включает в себя неспецифические взаимодействия с липидами мембран нервных клеток. Исследованию природы взаимодействия анестетиков с биологическими или модельными мембранами посвящено довольно много работ. Хотя в этих работах и было показано, что анестетики способны нарушать структуру липидного бислоя, механизм их действия до сих пор остается загадкой. Вполне вероятно, что эффект этих соединений прямо или косвенно связан с влиянием на специфические белки мембран нервных клеток. Методом