§2. О метеоритных кратерах и о других последствиях падений метеоритов
Из приведенных описаний метеоритных событий видно, что падения на Землю наиболее крупных метеороидных тел создают опасность для людей и всего, что ими создано, а также земной флоры и фауны. Более того, катастрофические явления, подобные тем, что наблюдались при падении Тунгусского тела, могут создать угрозу всей человеческой цивилизации. Конечно, это может произойти при столкновении с достаточно большим телом, типа астероида или ядра кометы. Земная поверхность хранит многие следы столкновений с крупными космическими телами в виде кратеров больших размеров - так называемых "астроблем" (или "звездных ран"). На сегодняшний день их обнаружено более 230. Размеры самых крупных из них превышают 200 км . Один из наиболее хорошо сохранившихся кратеров (по причине его относительно "молодого" возраста) - это "Каньон дьявола", находящийся в штате Аризона в США. Его диаметр 1240 м, а глубина - 170 м. В 1906 г. геолог Д. Барринджер доказал, что этот кратер имеет ударное происхождение, а не какое-либо еще. При исследованиях кратера было обнаружено около 12 т метеоритного вещества и было установлено, что он возник при падении на Землю примерно 50 тыс. лет назад железо-никелевого метеорита с размером около 60 м, двигавшегося со скоростью 20 км/с.
На земной поверхности практически не осталось древних кратеров с размером менее 1 км по причине постоянной атмосферной и водной эрозии. Значительно больше кратеров по сравнению с земной поверхностью, мы можем наблюдать на Луне и других планетах и их спутниках с более разреженной атмосферой или лишенных ее вообще (Луне, Меркурии, Марсе и др.). Как показывают расчеты, в течение первых 100 млн. лет после своего образования Земля должна была "вычерпать" практически все твердое вещество, двигавшееся в ближайших окрестностях ее орбиты. Однако Земля и сейчас продолжает встречать на своем пути пыль, камни и даже глыбы километровых размеров. Откуда же они берутся? Ответим на этот вопрос чуть ниже, после изложения сведений о составе и структуре метеоритного вещества.
§3. О составе метеоритного вещества, падающего на земную поверхность
Во всем упавшем на землю метеоритном веществе примерно 92% составляют каменные метеориты, 6% - железные и 2% - железо-каменные. Атмосфера является первым "фильтром", через который проходит все падающее на Землю метеоритное вещество. Чем более оно тугоплавкое и прочное, тем больше у него "шансов" попасть на земную поверхность. Еще одним "фильтром" можно назвать селекцию метеоритов при их находках. Очевидно, что любой метеорит тем легче найти на земной поверхности, чем более необычен его внешний вид на фоне земной поверхности. Тридцать лет назад японские ученые неожиданно обнаружили, что наилучшим местом для поиска метеоритов является Антарктида, покрытая большой толщей полярных льдов. Прежде всего, метеориты легко обнаружить на фоне белого льда. И кроме того, метеориты, упавшие на этот континент многие сотни и даже тысячи лет назад, лучше сохраняются в антарктических льдах. В то же время метеориты, оказавшиеся в других местах земной поверхности, подвергаются действию атмосферного выветривания, водной эрозии и других разрушающих факторов и либо разлагаются, либо оказываются погребенными.
Основными компонентами метеоритного вещества являются железо-магнезиальные силикаты и никелистое железо. Иногда бывают обильны и сульфиды железа (троилит и др.). Распространенные минералы, входящие в силикаты метеоритного вещества, - это оливины (Fe, Mg)2SiO4 (от фаялита Fe2SiO4 до форстерита Mg2SiO4) и пироксены (Fe, Mg)SiO3 (от ферросилита FeSiO3 до энстатита MgSiO3) разного состава. Они присутствуют в силикатах либо в виде мелких кристаллов или в виде стекла, либо как смесь с разными пропорциями. На сегодняшний день в метеоритном веществе обнаружено около 300 разных минералов. И хотя их количество в процессе исследований новых метеоритов постепенно увеличивается, но все равно более чем на порядок уступает числу известных земных минералов.
§4. Хондриты
Наиболее многочисленные каменные метеориты делятся на две большие группы: хондриты и ахондриты. Хондриты получили свое название из-за наличия в них необычных включений сферической или эллиптической формы - хондр - на более темном фоне, который называется матрицей. Хондры можно видеть на поверхности разлома метеорита, но лучше всего они заметны на полированной поверхности его распила. Размеры хондр могут быть различны - от микроскопических до сантиметровых. Занимаемый ими объем иногда достигает 50% объема метеорита. И хондры и матрица практически не отличаются по составу и состоят в основном из мелкокристаллических железо-магнезиальных силикатов и стекол. Однако по структуре хондры все же состоят в основном из кристаллического вещества. На этом основании некоторыми учеными высказывается идея о кристаллизации хондр из расплава. Содержание никелистого железа в хондритах не превышает 30%, и присутствует оно в виде мелких частиц неправильной или сферической формы. В целом вещество хондритов сравнительно плотное (от 2 до 3,7 г/см3), хотя и хрупкое. Достаточно лишь небольшого усилия для того, чтобы раскрошить в руках хондритовый метеорит. Удивительно то, что хондры до сих пор обнаружены только в метеоритах. Их происхождение пока остается загадкой, поскольку неизвестны механизмы их возникновения. Другой важной особенностью хондритов является их предельно простой элементный состав. Если не учитывать самые летучие элементы (H, He, O и некоторые другие), то получается, что состав хондритов очень близок к элементному составу Солнца. Причем такая близость прослеживается не только по основным элементам, но и по примесным, также являющимися важными геохимическими индикаторами. Примесные элементы делятся на три группы: литофильные (Se, Sr, Rb, Ba, Ce, Cs, Th, U и др.), халькофильные (Cu, Zn, Sn, Pb, Ag, Hg, Cd, In и др.) и сидерофильные (Ga, Ge, Ru, Pt, Pd, Os, Ir, Rh и др.), которые обнаруживают сродство с минералами, богатыми кислородом, серой и железом соответственно. В частности, горные породы Земли, прошедшие магматическую дифференциацию, содержат в основном литофильные примесные элементы. Халькофильные элементы встречаются на земной поверхности только в ограниченных областях рудных месторождений, а сидерофильные практически отсутствуют. Оказалось, что в хондритовых метеоритах примесные элементы разных групп присутствуют в тех же пропорциях (с незначительными вариациями), что и на Солнце. Это означает, что хондриты образовались из вещества солнечного состава и не проходили дифференциацию. В то же время, очевидно, что они эпизодически подвергались нагреванию, хотя и не очень сильному, поэтому в них произошли некоторые структурные и минералогические изменения, называемые тепловым метаморфизмом.
Хондриты четко делятся на три больших класса по форме содержания железа, точнее по степени его окисленности. Хондритам этих классов дали следующие названия и обозначения: энстатитовые (Е), обыкновенные (О) и углистые (С). В том же порядке в них увеличивается содержание окисленного (двух- и трехвалентного) железа. Все хондриты были еще поделены на шесть петрологических типов, в которых постепенно усиливаются структурные и минералогические проявления теплового метаморфизма (от 1 до 6 типа). В наиболее распостраненнй классификации большинство хондритов относят (по составу преобладающих силикатных минералов) к двум большим группам - L и H.
а) Углистые хондриты
Углистые хондриты (обозначаемые буквой "C" - от английского слова carbonaceous - углистый) - самые темные, чем и оправдывают свое название. Они содержат много железа, но почти все оно находится в связанном состоянии в силикатах. Темную окраску углистым хондритам придают в основном минерал магнетит (Fe3O4), а также небольшие количества графита, сажи и органических соединений. Эти метеориты содержат также значительную долю водосодержащих минералов или гидросиликатов (серпентин, хлорит, монтмориллонит и ряд других). C-хондриты представляют собой неметаморфизованное или слабо метаморфизованное вещество. В настоящее время углистые хондриты делятся на четыре группы (CI, CM, CO и CV) на основании постепенного изменения их свойств (эта классификация была предложена Дж. Вассоном в 70-х годах). В каждой из этих групп есть метеориты - наиболее типичные представители, свойства которых принимаются в качестве эталонных. При обозначении этих групп к латинской букве "C" добавляется еще индекс, соответствующий первой букве названия метеорита - типичного представителя данной группы. (Следует заметить, что каждому найденному метеориту обычно присваивают имя в соответствии с названием той географической местности, где он был найден). В упомянутых группах углистых хондритов CI, CM, CO, CV типичными представителями являются соответственно метеориты Ivuna, Мигеи (метеорит, найденный на Украине, в Николаевской области), Ornans и Vigarano. Несколько раньше (в 1956 г.) Г. Вииком было предложено деление углистых хондритов на три группы (CI, CII и CIII), упоминания о которых можно иногда встретить в литературе. Используемые нами (вслед за Вассоном) группы CI и CM полностью соответствуют группам CI и CII классификации Виика, а группы CO и CV можно рассматривать как составляющие группы CIII. В CI-хондритах гидратированные силикаты занимают преобладающую часть объема. Их рентгеновские исследования показали, что преобладающим силикатом является септехлорит (общая формула септехлоритов Y6(Z4O10)(OH)8, где Y = Fe2+, Mg; Z = Si, Al, Fe3+). Причем, все гидросиликаты находятся в аморфной форме, то есть в форме стекла. Дегидратированных силикатов (пироксенов, оливинов и др, которые появляются при температурах более 100° C) здесь вообще нет. CI-метеориты представляют собой исключение среди хондритов, поскольку их вещество вообще не содержит хондр, а состоит как бы из одной матрицы. Это подтверждает идею о кристаллизации хондр из расплавленного вещества, поскольку исследования показывают, что вещество CI-хондритов не подвергалось плавлению. Оно считается наиболее неизмененным, по сути первичным веществом Солнечной системы, сохранившимся с момента конденсации протопланетного облака. Именно этим объясняется высокий интерес ученых к CI-метеоритам. В CM-хондритах содержится уже только 10-15% связанной воды (в составе гидросиликатов), а в виде хондр присутствует 10-30% пироксена и оливина. В CO- и CV-хондритах содержится только около 1% воды в связанном состоянии и преобладают пироксены, оливины и другие дегидратированные силикаты. В небольших количествах в них имеется и никелистое железо. Присутствие гидросиликатов заметно снижает плотность углистых хондритов: от 3,2 г/см3 в CV до 2,2 г/см3 в CI-метеоритах.