Поскольку вязкость мантии ~1022 Па • с, то континенты плавают по мантии не свободно, а сильно сцеплены с ней. Сцепление максимально в тех местах, где температура ниже. Каждый континент большую часть времени находится на своем нисходящем мантийном потоке, поскольку континенты постоянно притягиваются к холодным зонам субдукции горизонтальными мантийными течениями. Однако, когда континент плывет к соседнему большему нисходящему мантийному потоку, он тянет за собой и свой нисходящий мантийный поток. Когда сходятся два континента, под ними возникает двойной нисходящий мантийный поток, который с еще большей силой притягивает к себе другие континенты. В результате возникает суперконтинент над единой системой мощных нисходящих мантийных потоков. Но и это состояние неустойчиво, оно квазиравновесное, и, как будет показано ниже, суперконтинент неизбежно распадается.
Приведенные результаты численного эксперимента объединяют важнейшие явления глобальной тектоники: почему под теплозапирающими континентами измеренная температура не выше, а на 200°С ниже, чем под океанами. Каждый континент постоянно затягивается мантийными течениями на нисходящий поток и, как показали расчеты, в среднем большую часть времени проводит на самых холодных местах мантии. Именно поэтому континентальная литосфера остается холодной и на три порядка более вязкой. Низкая температура континентальной литосферы вместе с эффектом плавучести и сухостью предохраняет ее (включая глубокие корни континентов) от перемешивания в мантии в течение миллиардов лет.
Как же распадаются суперконтиненты? На рисунках 7 и 8 показаны результаты расчета двумерной модели конвекции в жидкости с переменной вязкостью. Несмотря на предельную просто ту, эта модель объясняет ряд принципиально важных процессов глобальной эволюции Земли. Имеется кювета с вязкой жидкостью, нагреваемой снизу. Вязкость зависит от давления и температуры. В жидкости возникает тепловая конвекция Рэлея-Бинара с несколькими конвективными ячейками. При низком нагреве все они имеют примерно равные размеры и порядок толщины слоя. Ставим две легкие толстые пластины по обе стороны от какого-либо нисходящего мантийного потока и на компьютере начинаем считать их эволюцию по ранее полученным дифференциальным уравнениям. На рисунке 7 видно, как холодная высоковязкая океаническая литосфера затягивается внутрь жидкости нисходящими конвективными мантийными потоками. Оба континента также движутся к ближайшему нисходящему потоку, но, будучи плавучими, не погружаются в жидкость, а объединяются над потоком. Далее происходит следующее. Сплошная кривая на рисунке 7 - это рассчитанный относительный тепловой поток, выходящий из мантии. Он высокий -над восходящими мантийными потоками, и низкий - над нисходящими. Над каждым континентом тепловой поток в 2-3 раза ниже среднего, так как континенты препятствуют выходу тепла из Земли. Континенты сошлись над холодным нисходящим мантийным потоком, но тепло продолжает идти со дна горячей мантии. Поскольку малоподвижный суперконтинент тормозит выход тепла из мантии, мантия под ними начинает нагреваться, становиться легче, и вместо холодного нисходящего под суперконтинентом возникает горячий восходящий мантийный поток, раскалывающий суперконтинент. Континенты расходятся в разные стороны. Весь цикл занимает примерно 0.5 млрд. лет. (Недавно в США проведены лабораторные эксперименты, подтверждающие эти результаты, хотя и с меньшими деталями, чем дает численная модель.) Заметим, что если большой континент (подобно Африке) будет долго находиться на одном месте, то и под ним возникнет горячий восходящий мантийной поток. Тогда литосфера под континентом начнет истончаться и разрушаться.
Интересным результатом оказывается то , что расходящимися континентами в мантии при t=300 Ma возникает структура, сов падающая со структурой дна Атлантического океана по многим деталям. В центре океана имеется хребет, где поднимется горячее вещество и тепловой поток составляет 200 мВт/м2, что в 7 раз меньше теплового потока, выходящего через
континенты. Высоковязкая океаническая литосфера утолщается с удалением от хребта, соответственно углубляется дно океана. С другой стороны от расходящихся континентов возник Тихий океан с глубоководными желобами над зонами субдукции. Рисунок 8 показывает, что при t = 400 Ma (примерно еще через 50 млн. лет) в расширенном Атлантическом океане литосфера оторвется от континентов и начнет погружаться под них. Атлантический океан по структуре станет похож на современный Тихий океан.
Пунктирная кривая на рисунке 8 - рассчитанный рельеф дна океанов. В момент раскола суперконтинента все континенты поднимаются, и соответственно, уровень океана понижается и остается низким в течение примерно 100 млн. лет, пока континент природу и длительность эр палеозоя, мезозоя и кайнозоя. Когда континенты находились наверху, господствовала преимущественно сухопутная находятся на восходящем мантийном потоке. Этот результат помогает понять природу и длительность эр палеозоя, мезозоя и кайнозоя. Когда континенты находились наверху, господствовала преимущественно сухопутная жизнь мезозоя. Когда континенты оказывались вблизи нисходящих мантийных потоков, уровень океана относительно них повышался, что соответствует эре с развитой морской жизнью палеозоя и кайнозоя. Низкий уровень океана в докембрии мог быть связан с существованием суперконтинента Родинии, что хорошо согласуется с данными о глобальном изменении уровня Мирового океана.
Тектоника плит объясняет глобальные изменения уровня океана относительно пассивных
континентов подъемом воды вследствие возникновения системы океанических хребтов в результате хаотических конвективных процессов. Как видно на рисунке 7, причиной являются подъемы и опускания континентов (в зависимости от их нахождения на восходящих или нисходящих мантийных потоках). При этом между расходящимися континентами возникает хребет, но именно суперконтинент прогревает мантию и создает эти восходящие горячие мантийные потоки и хребты.
На рисунках 7 и 8 показано, насколько велико тепловое и механическое влияние континентов
на мантию. Представленный численный эксперимент доказывает новую физическую закономерность. Бенар в 1900 г. открыл, что при нагревании жидкости в ней возникают упорядоченные конвективные ячейки. Если на жидкости плавают еще и толстые большие пластины (в геологии -континенты), то их тепловое и механическое взаимодействие с жидкостью приводит к дополнительным упорядоченным квазипериодическим движениям. Система "мантия континенты" эволюционирует между двумя квазиравновесными состояниями: первое - когда континент находится вблизи своего нисходящего мантийного потока, второе - когда почти все континенты объединены в суперконтинент над единой системой нисходящих мантийных потоков.
Результаты численного эксперимента объясняют характерные особенности трехмерного распределения температуры в современной Земле. На рисунке 1 видны небольшие аномально холодные области. Это - остатки океанических литосферных плит, погрузившихся в мантию и еще не успевших разогреться и растаять. Более крупными аномалиями являются два гигантских горячих восходящих потока - под Африкой и Тихим океаном. Их до сих пор объясняли хаосом мантийной конвекции. Решение уравнений переноса энергии, массы и импульса в применении к мантии с плавающими континентами показывает, что горячие мантийные потоки должны возникать под суперконтинентами. Их время - около 1 млрд.
лет, поэтому современный горячий поток под Африкой мог возникнуть 250 млн. лет назад под
Пангеей. Горячий поток под Тихим океаном мог возникнуть под суперконтинентом Родиния 900 млн. лет назад и остаться после расхождения континентов.
Приведу результат еще одного численного эксперимента. Юго-восточная окраина Евразии отличается от других континентов. Там есть много зон субдукции и краевых морей, отделенных от океана островами (Японские, Тайвань и др.). На Тихоокеанской окраине Южной Америки также существуют зоны субдукции, но краевых морей и островов нет. Эту проблему можно объяснить с помощью новой модели плавающих континентов. Для этого на конвективную жидкость была помещена одна пластина, моделирующая Евразию. Под действием мантийных
течений Евразия приближается (но еще не подошла) к нисходящему мантийному потоку - зоне субдукции. Поскольку размеры Евразии больше размера конвективной ячейки, часть течений под
ней направлена в другую сторону. В результате она движется со скоростью около 2 см/год, что в 3-4 раза меньше скорости горизонтальных течений, тянущих литосферу к зоне субдукции.
Численный эксперимент показал, что между Евразией и зоной субдукции возникает зона растяжения и от континента откалывается небольшой кусок, который быстро оказывается на месте нисходящего мантийного потока (в зоне субдукции).Эксперимент соответствует геологическим данным об отрыве Японских островов от Евразии 15-25 млн. лет назад. Возникает Японское море с растянутой истонченной океанической литосферой и, соответственно, с повышенным локальным тепловым потоком.
Модель мантийной конвекции с плавающими континентами позволяет предсказать судьбу
Японского моря, Японии и других островов. Сейчас Япония находится в зоне субдукции. Евразийский континент, продолжая замедленно двигаться, упирается в эту зону, частично сдвигая ее в сторону океана. Затем примерно через 30-50 млн. лет окраинное море исчезнет, и Япония вместе с другими островами примкнет к Евразии .
Поскольку за время своего существования Японские острова растут за счет вулканических пород, то после их присоединения увеличится и Евроазиатский континент. Магма, излившаяся на
океаническое дно в небольших объемах < 20 км3, затянется в мантию в зонах субдукции, поэтому более крупные осколки континентов (типа Японских островов) послужат зародышами новых островных дуг. После закрытия моря на окраине Евразии вместо зоны растяжения возникнет зона
сжатия и вырастут горы типа Анд Южной Америки. Такая эволюция напряженного состояния определяет тектонику и общую сейсмическую обстановку этих регионов.