Существенным недостатком взглядов Коперника было то, что он разделял господствовавшее до него убеждение в конечности мироздания.
Одним из активных сторонников учения Коперника, поплатившихся жизнью за свои убеждения, был знаменитый итальянский мыслитель Джордано Бруно (1548—1600). Но он пошел дальше Коперника, отрицая наличие центра Вселенной вообще и отстаивая тезис о бесконечности Вселенной. Бруно говорил о существовании во Вселенной множества тел, подобных Солнцу и окружающим его планетам.
Инквизиция имела серьезные причины бояться распространения образа мыслей и учения Бруно. В 1592 году он был арестован и в течение восьми лет находился в тюрьме, подвергаясь допросам со стороны инквизиции. 17 февраля 1600 г., как нераскаявшийся еретик, он был сожжен на костре на Площади цветов в Риме.
Вторая научная революция. Создание классической механики и
экспериментального естествознания. Механистическая картина мира
В учении Галилео Галилея (1564—1642) были заложены основы нового механистического естествознания.
по принципу Аристотеля: тело движется только при наличии внешнего на него воздействия, и если это воздействие прекращается, тело останавливается. Галилей показал, что этот принцип Аристотеля (хотя и согласуется с нашим повседневным опытом) является ошибочным.
Галилей сформулировав совершенно иной принцип, получивший впоследствии наименование принципа инерции: тело либо находится в состоянии покоя, либо движется, не изменяя направления и скорости своего движения, если на него не производится какого-либо внешнего воздействия.
Истинное знание, считал Галилей, достижимо исключительно на пути изучения природы при помощи наблюдения, опыта (эксперимента) и вооруженного математическим знанием разума, — а не путем изучения и сличения текстов в рукописях античных мыслителей.
Росту научного авторитета Галилея способствовали его астрономические исследования, обосновывавшие и утверждавшие гелиоцентрическую систему Коперника. Используя построенные им телескопы Галилей сделал целый ряд интересных наблюдений и открытий.
Но самое главное в деятельности Галилея как ученого-астронома состояло в отстаивании справедливости учения Н.Коперника.
Ему пришлось предстать перед судом инквизиции. После длительных допросов он был вынужден отречься от учения Коперника и принести публичное покаяние.
Кеплер занимался поисками законов небесной механики и составлением звездных таблиц. Он разработал теорию солнечных и лунных затмений, предложил способы их предсказания, уточнил величину расстояния между Землей и Солнцем, составил так называемые Рудольфовы таблицы. С помощью этих таблиц можно было определить положение планет.
Рене Декарт (1596— 1650) полагал, что мировое пространство заполнено особым легким, подвижным веществом, способным образовывать гигантские вихри.
Он говорил, что под действием давления соседних вихрей и вследствие других причин вихри могут принимать сплюснутую или эллиптическую форму. Таким образом, теория вихрей Декарта фактически не могла объяснить движение планет по законам Кеплера.
Исаак Ньютон (1643—1727). Его научное наследие чрезвычайно разнообразно. В него входит и создание (параллельно с Лейбницем, но независимо от него) дифференциального и интегрального исчисления, и важные астрономические наблюдения, которые Ньютон проводил с помощью собственноручно построенных зеркальных телескопов (он так же, как и Галилей, именно телескопу обязан первым признаниям своих научных заслуг), и большой вклад в развитие оптики (он, в частности, поставил опыты в области дисперсии света и дал объяснение этому явлению). Но самым главным научным достижением Ньютона было продолжение и завершение дела Галилея по созданию классической механики.
Ньютон сформулировал три основных закона движения, которые легли в основу механики как науки.
В 1687 г. вышел в свет главный труд Ньютона «Математические начала натуральной философии», заложивший основы современной теоретической физики. Эта книга подводила итоги всему сделанному за предшествующие тысячелетия в учении о простейших формах движения материи.
Ньютон подверг критике картезианство, в частности, декартову гипотезу «вихрей». Главный упрек в адрес картезианцев (последователей Декарта) сводился к тому, что они не обращались в должной мере к опыту, конструировали «гипотезы», «обманчивые предположения» для объяснения природных явлений.
Идеи Ньютона, опиравшиеся на математическую физику и эксперимент, определили направление развития естествознания на многие десятилетия вперед.
Естествознание Нового времени и проблема философского метода
В истории изучения человеком природы сложились, как известно, два прямо противоположных, несовместимых метода этого изучения, которые приобрели статус общефилософских, т.е. носящих всеобщий характер. Это — диалектический и метафизический методы.
При метафизическом подходе объекты и явления окружающего мира рассматриваются изолированно друг от друга, без учета их взаимных связей и как бы в застывшем, фиксированном, неизменном состоянии. Диалектический подход, наоборот, предполагает изучение объектов, явлений со всем богатством их взаимосвязей, с учетом реальных процессов их изменения, развития. . Одним из ярких выразителей диалектического подхода (несмотря на всю его наивность) был древнегреческий мыслитель Гераклит, о котором уже говорилось выше. Он обращал внимание на взаимосвязи и изменчивость в природе, выдвигал идею о ее беспрерывном движении и обновлении.
Новые научные идеи и открытия второй половины XVIII — первой половины XIX вв. вскрыли диалектический характер явлений природы. Специальнонаучные теории развития, появившиеся в космологии, геологии, биологии, давали естествоннонаучное обоснование диалектической концепции развития материального мира. Достижения естествознания этого периода опровергали метафизический взгляд на природу, демонстрировали ограниченность метафизики, которая все более и более тормозила дальнейший прогресс науки. Только диалектика могла помочь естествознанию выбраться из теоретических трудностей.
Третья научная революция. Диалектизация естествознания и чищение его от натурфилософских представлений.
Начало процессу стихийной диалектизации естесгвенных наук, составившему суть трегьей революции в естествознании, положила работа немецкого ученого и философа Иммануила Канта
Кант пытался объяснить процесс возникновения Солнечной системы действием сил притяжения, которые присущи частицам материи, составлявшим эту огромную туманность.
Идеи Канта о возникновении и развитии небесных тел были несомненным завоеванием науки середины XVIII века. Его космогоническая[2] гипотеза пробила первую брешь в метафизическом взгляде на мир.
Пьер Симон Лаплас предположил, что первоначально вокруг Солнца существовала газовая масса, нечто вроде атмосферы. Эта «атмосфера» была так велика, что простиралась за орбиты всех планет. Вся эта масса вращалась вместе с Солнцем Затем, вследствие охлаждения, в плоскости солнечного экватора образовались газовые кольца, которые распались на несколько сфероидальных частей—зародышей будущих планет, вращающихся по направлению своего обращения вокруг Солнца. При дальнейшем охлаждении внутри каждой такой части образовалось ядро, и планеты перешли из газообразного в жидкое состояние, а затем начали затвердевать с поверхности.
Жорж Кювье (1769—1832) утверждал, что каждый период в истории Земли завершался мировой катастрофой —поднятием и опусканием материков, наводнениями, разрывами слоев и т. д. В результате этих катастроф гибли животные и растения, и в новых условиях появлялись новые их виды.
Батист Ламарк (1744—1829). В 1809 г. вышла его работа «Философия зоологии». Ламарк видел в изменяющихся условиях окружающей среды движущую силу эволюции органического мира. Согласно Ламарку, изменения в окружающей среде вели к изменениям в потребностях животных, следствием чего было изменение их жизнедеятельности.
Чарлз Лайеля (1797—1875) он показал, что все изменения, которые произошли в течение геологической истории, происходили под влиянием тех же факторов, которые действуют и в настоящее время.
Чарлз Роберт Дарвин (1809—1882) изложил факты и причины биологической эволюции. Он показал, что вне саморазвия органический мир не существует и поэтому органическая эволюция не может прекратиться. Принципиально важной в учении Дарвина является теория естественного отбора.
Маттиас Якоб Шлейден (1804—1881), установивший, что все растения состоят из клеток, и профессор, биолог Теодор Шванн (1810—1882), распространивший это учение на животный мир.
Что касается животных, то их все «многообразные формы возникают также только из клеток, причем аналогичных клеткам растений». Открытием клеточного строения растений и животных была доказана связь, единство всего органического мира.
Юлиус Роберт Майер (1814—1878) фактически высказал мысль, что химическая энергия, содержащаяся в пище, превращается в теплоту.
Майер показал, что химическая, тепловая и механическая энергии могут превращаться друг в друга и являются равноценными.
Джеймс Прескотт Джоуль (1818—1889) он пришел к выводу, что теплоту можно создавать с помощью механической работы, используя магнитоэлектричество (электромагнитную индукцию), и эта теплота пропорциональна квадрату силы индуцированного тока.
Герман Людвиг Фердинанд Гельмгольц (1821—1894) пришел от физиологии к закону сохранения энергии.
Свой вклад в диалектизацию естествознания внесли и некоторые открытия в химии. К числу таковых относится получение в 1828 г. немецким химиком Фридрихом Вёлером (1800—1882) искусственного органического вещества—мочевины. Это открытие положило начало целому ряду синтезов органических соединений из исходных неорганических веществ.