Специфика гуманитарной культуры состоит в том, что знание о системе ценностных зависимостей в обществе активизируется исходя из принадлежности индивида к определенной социальной группе.
Взаимосвязь естественнонаучной и гуманитарной культур заключается в следующем:
- они имеют единую основу, выраженную в потребностях и интересах человека и человечества в создании оптимальных условий для самосохранения и совершенствования
- осуществляют взаимообмен достигнутыми результатами (это нашло свое выражение, например, в этике естествознания, рационализации гуманитарной культуры и т.д.)
- взаимно координируют в историко-культурном процессе
- являются самостоятельными частями единой системы знаний науки
- имеют основополагающую ценность для человека, ибо он выражает единство природы и общества
5. Натурфилософия и ее место в истории естествознания.
Первой в истории человечества формой существования естествознания была так называемая натурфилософия (от лат-natura — природа), или философия природы. Последняя характеризовалась чисто умозрительным истолкованием природного мира, рассматриваемого в его целостности. Считалось, что философии — в ее натурфилософской форме — отведена роль «науки наук», «царицы наук», ибо она является вместилищем всех человеческих знаний об окружающем мире, а естественные науки являются лишь ее составными частями.
Натурфилософское понимание природы содержало много вымышленного, фантастического, далекого от действительного понимания мира. Появление натурфилософии в интеллектуальной истории человечества и очень длительное ее существование объясняется рядом неизбежных обстоятельств.
1. Когда естественнонаучного знания (в его нынешнем понимании) еще практически не существовало, попытки целостного охвата, объяснения окружающей действительности были единственным и оправданным способом человеческого познания мира.
2. Вплоть до XIX столетия естествознание было слабо дифференцировано, отсутствовали многие его отрасли. Еще в XVIII веке в качестве сформировавшихся, самостоятельных наук существовали лишь механика, математика, астрономия и физика. Химия, биология, геология находились лишь в процессе становления. В такой ситуации натурфилософия, строя общую картину природы, стремилась заменить собой отсутствующие естественные науки.
3. Отрывочному знанию об объектах, явлениях природы, которое давало тогдашнее естествознание, натурфилософия противопоставляла свои умозрительные представления о мире. В этих представлениях не известные еще науке причины и действительные (но пока непознанные) связи явлений заменялись вымышленными, фантастическими причинами и связями. Для истолкования непонятных явлений натурфилософы обычно придумывали какую-нибудь силу (например, жизненную силу) или какое-нибудь мифическое вещество (флогистон, электрическая жидкость, эфир и т. п.). Разумеется, действительные пробелы в естественнонаучном знании восполнялись при этом лишь в воображении. Это было вынужденное положение, которое, однако, не могло продолжаться бесконечно.
Когда в XIX веке естествознание достигло достаточно высокого уровня развития и был накоплен и систематизирован большой фактический материал, т. е. когда были познаны действительные причины явлений, раскрыты их реальные связи между собой, существование натурфилософии потеряло всякое историческое оправдание. А в связи с этим понимание философии как «науки наук» также прекратило свое существование. Вместе с уходом с исторической арены старой натурфилософии сама философия, также как и различные отрасли естествознания, наконец-то обрела свой предмет. Однако тесная двусторонняя связь между философией и естествознанием сохраняется по сей день.
6. Естествознание эпохи средневековья.
В эту эпоху философия тесно сближается с теологией (богословием). Возникает непреодолимое противоречие между наукой, делающей свои выводы из результатов наблюдение опытов, включая и обобщение этих результатов, и богословием, для которого истина заключается в религиозных догмах.
Пока европейская христианская наука переживала длительный период упадка (вплоть до ХII-ХШ вв.), на Востоке, наоборот, наблюдался прогресс науки. Со второй половины VIII в. научное лидерство явно переместилось из Европы на Ближний Восток. Древнегреческая научная мысль получила известность в мусульманском мире, способствуя развитию астрономии и математики. В истории науки этого периода известны такие имена арабских ученых, как Мухаммед аль-Баттани (850—929 гг.), астроном, составивший новые астрономические таблицы и т.п.
Средневековой арабской науке принадлежат и наибольшие успехи в химии. Опираясь на материалы александрийских алхимиков I века и некоторых персидских школ, арабские химики достигли значительного прогресса в своей области. В их работах алхимия постепенно превращалась в химию.
В XI веке страны Европы пришли в соприкосновение с богатствами арабской цивилизации, а переводы арабских текстов стимулировали восприятие знаний Востока европейскими народами.
Большую роль в подъеме западной христианской науки сыграли университеты (Парижский, Болонский, Оксфордский, Кембриджский и др.) которые стали образовываться начиная с XII века. И хотя эти университеты первоначально предназначались для подготовки духовенства, но в них уже тогда начинали изучаться предметы математического и естественнонаучного направления, а само обучение носило, более чем когда-либо раньше, систематический характер.
XIII век характерен для европейской науки началом эксперимента и дальнейшей разработкой статики Архимеда. Здесь наиболее существенный прогресс был достигнут группой ученых Парижского университета. Они развили античное учение о равновесии простых механических устройств, решив задачу, с которой античная механика справиться не могла, — задачу о равновесии тела на наклонной плоскости.
В XIV веке рождаются новые идеи, начинают использоваться математические методы, т. е. идет прогресс подготовки будущего точного естествознания. Лидерство переходит к группе ученых Оксфордского университета, среди которых наиболее значительная фигура — Томас Брадвардин. Ему принадлежит трактат «О пропорциях».
Научные знания эпохи средневековья ограничивались в основном познанием отдельных явлений и легко укладывались в натурфилософские схемы мироздания, выдвинутые еще в период античности (главным образом в учении Аристотеля). В таких условиях наука еще не могла подняться до раскрытия объективных законов природы. Естествознание — в его нынешнем понимании — еще не сформировалось. Оно находилось в стадии своеобразной «преднауки».
7. Создание классической механики и экспериментального естествознания.
Формирование классической механики и основанной на ней механической картины мира происходило по 2-м направлениям: 1. обобщение полученных ранее результатов и, прежде всего, законов свободного падения тел, открытых Галилеем, а также законов движения планет, сформулированных Кеплером; 2. создания методов для количественного анализа механического движения в целом. В первой половине 19 в. наряду с теоретической механикой выделяется и прикладная (техническая) механика, добившаяся больших успехов в решении прикладных задач. Все это приводило к мысли о всесилии механики и к стремлению создать теорию теплоты и электричества так же на основе механических представлений. Наиболее четко эта мысль была выражена в 1847 г. физиком Германом Гельмгопьцем в его докладе "О сохранении силы": "Окончательная задача физических наук заключается в том, чтобы явления природы свести к неизменным притягательным и отталкивающим силам, величина которых зависит от расстояния" В любой физической теории присутствует довольно много понятий, но среди них есть основные, в которых проявляется специфика этой теории, ее базис, мировоззренческая сущность. К таким понятиям относят т.н. фундаментальные понятия, а именно: материя, движение, пространство, время, взаимодействие. Каждое из этих понятий не может существовать без четырех остальных. Вместе они отражают единство Мира.
8. Развитие естествознания в XVIII-XIX веках.
С первыми трудностями механистическая картина мира встретилась при изучении тепловых явлений, оказалось невозможно описать поведение тепловой системы механистически. Это привело к пересмотру в МКМ представлений о детерминизме и открытию законов термодинамики. Но, несмотря на выявленные слабости, МКМ господствовала в европейской науке более 200 лет. В XVIII в. появились первые термометры, которые позволили детально изучать тепловые явления. Вообще в XVIII в. существовала 19 температурных шкал, из которых до нашего времени сохранились: Фаренгейта, Реомюра и Цельсия. В XVIII в. теоретически обосновывалась теория теплорода. Она исходила из того, что во Вселенной содержатся элементарные частички, которые, видоизменяясь, могут превращаться в частицы теплоты, света, магнетизма, электричества. XVIII в. также охарактеризован большим вниманием к электричеству. Электрические опыты устраивались не только в лабораториях, но и в светских салонах и королевских дворцах. Г. Рихман и М. Ломоносов пришли к важным выводам о том, что электричество может быть первичным, возникающим в результате трения, и производным, возникающим в проводниках в результате контактов с заряженными телами. Ш. Кулон открыл закон взаимодействия зарядов и показал, что электрические силы зависят от расстояния и силы тяготения. В 1820 г. А. Ампер разработал теорию связи электричества и магнетизма. Он ввел понятия электрического тока и напряжения, электрической цепи. В 1831 г. М. Фарадей открыл электродинамическую индукцию, таким образом была установлена динамическая связь между электричеством и магнетизмом. В 1809 г. Ж. Ламарк выдвинул идею эволюции живых организмов, основав ее на понятиях наследственности и управления частей организма. В 1839 г. Ч. Дарвин сформулировал теорию эволюции путем естественного отбора. Развивалась и наука о строении человеческого организма - физиология. Основателем сравнительной физиологии считается немецкий врач И. Мюллер. Исследуя брожение, Л. Пастер выделил активную часть микроорганизмов - бактерии. Он показал, что бактерии очень жизнеспособны и уничтожить их можно только путем стерилизации. Пастер внес огромный вклад и в медицинскую науку, изучив иммунитет человека и создав прививки против сибирской язвы, холеры бешенства. Естествознание XIX в. обогатилось созданием электромагнитной теории Дж. Максвелла. Он показал, что колебания световых волн совершаются под воздействием напряженности электрического и магнитного полей. В 1895 г., исследуя катодные лучи, В. Рентген открыл новое излучение, которое назвал Х-лучами. Это излучение проникало практически через все тела. Оно не отклонялось магнитным полем и, кроме того, разряжало все наэлектризованные тела. К. Лоренц объединил в своей электронной теории идеи механики, кинетическую теорию материи и теорию поля Максвелла и тем самым решил задачу построения единой теории строения вещества и излучения. В основу теории Лоренца легло понятие электрона - частицы, которая помимо механистических характеристик обладает и электрическим зарядом.9. Революция в естествознании в первой половине XX века.