32. Образование Солнца и планет солнечной системы.
Научные гипотезы об образовании Солнечной системы появились в XVII—XVIII вв. (Р. Декарт, Ж. Бюффон). Наиболее удачной гипотезой этого периода является небулярная теория Канта—Лапласа: вращающееся облако межзвездного газа конденсировалось, Солнце и вся Солнечная система образовались из сжимающейся газовой туманности.
Часть газового вещества отделилась от центрального сгустка (Солнца) под действием центробежных сил (в результате ускорения вращения в ходе сжатия) и послужила материалом для формирования планет.
Наиболее распространенной является электромагнитная гипотеза о происхождении Солнечной системы, предложенная X. Алофвеном и доработанная Ф. Хойлом, в соответствии с которой электромагнитные силы оказали решающее влияние на образование Солнечной системы. Ныне считается, что первоначальное газовое облако — материальная основа Солнца и планет — представляло собой ионизированный газ, испытывавший воздействие электромагнитных сил. Из огромного газового облака в результате концентрации возникло Солнце. На очень большом расстоянии от него остались части этого облака, гравитационные силы стали притягивать эти остатки газа к Солнцу, но его магнитное поле оставило падающий газ на различных расстояниях, что и определило местонахождение планет, образовавшихся из этих остатков газа. Воздействие гравитационных и электромагнитных сил способствовало концентрации, сгущению частей падающего газа и превращению их в планеты.
Солнце — плазменный шар с плотностью 1,4 г/см3 и температурой на поверхности 6000 К. В короне (атмосфере) Солнца происходят вспышки — протуберанцы. Солнечная активность имеет цикл 11 лет. Термоядерные реакции превращения водорода в гелий являются источником солнечной энергии. Скорость движения Солнца вокруг оси Галактики составляет 250 км/с. Возраст Солнца и Солнечной системы — 5 млрд. лет.
33. Источник энергии Солнца.
Только в XX веке было найдено правильное решение этой проблемы. Первоначально Резерфорд выдвинул гипотезу, что источником внутренней энергии Солнца является радиоактивный распад. В 1920 годуАртур Эддингтон предположил, что давление и температура в недрах Солнца настолько высоки, что там могут идти термоядерные реакции, при которой ядра водорода (протоны) сливаются в ядро гелия-4. Так как масса последнего меньше, чем сумма масс четырёх свободных протонов, то часть массы в этой реакции, согласно формуле Эйнштейна E = mc2, переходит в энергию. То, что водород преобладает в составе Солнца, подтвердила в 1925 годуСесиллия Пейн ((англ.) Cecilia Payne). Теория термоядерного синтеза была развита в 1930-х годах астрофизиками Чандрасекаром и Гансом Бете. Бете детально рассчитал две главные термоядерные реакции, которые являются источниками энергии Солнца. Наконец, в 1957 году появилась работа Маргарет Бёрбридж ((англ.) Margaret Burbidge) «Синтез элементов в звёздах», в которой было показано, что большинство элементов во Вселенной возникло в результате нуклеосинтеза, идущего в звёздах.
34. Строение Земли.
Земля выделена самой природой: в Солнечной системе только на этой планете существуют развитые формы жизни, только на ней локальное упорядочение вещества достигло необычайно высокой ступени, продолжая общую линию развития материи. Именно на Земле пройден сложнейший этап самоорганизации, знаменующий глубокий качественный скачок к высшим формам упорядоченности.
Атмосфера Земли кардинально отличается от атмосфер других планет: в ней низкое содержание углекислого газа, высоко содержание молекулярного кислорода и относительно велико содержание паров воды. Две причины создают выделенность атмосферы Земли: вода океанов и морей хорошо поглощает углекислый газ, а биосфера насыщает атмосферу молекулярным кислородом, образующимся в процессе растительного фотосинтеза. Расчёты показывают, что если освободить всю поглощённую и связанную в океанах углекислоту, убрав одновременно из атмосферы весь накопленный в результате жизнедеятельности растений кислород, то состав земной атмосферы в своих основных чертах стал бы подобен составу атмосфер Венеры и Марса.
В атмосфере Земли насыщенные водяные пары создают облачный слой, охватывающий значительную часть планеты. Облака Земли входят важнейшим элементом в круговорот воды, происходящий на нашей планете в системе гидросфера – атмосфера - суша.
Рельеф земной поверхности в целом характеризуется глобальной асимметрией двух полушарий: одно из них представляет собой гигантское пространство, заполненное водой. Это – океаны, занимающие более 70% всей поверхности. В другом полушарии сосредоточены поднятия коры, образующие континенты. Океаническая и континентальная разновидности коры различаются и по возрасту, и по химико-геологическому составу. Понятно, что рельеф океанического дна отличен от континентального рельефа.
Средняя глубина мирового океана близка к 4 км, отдельные впадины достигают в три раза большей глубины, а отдельные конусы значительно возвышаются над поверхностью воды. Главная достопримечательность океанического рельефа – глобальная система срединных хребтов, тянущаяся на десятки тысяч км. Вдоль их центральных частей протянулись разломы, так называемые рифтовые зоны, через которые из мантии на поверхность выходят свежие массы вещества. Они раздвигают океаническую кору, формируя её в процессе непрерывного обновления.
Рельеф континентальной части планеты более разнообразен: равнины, возвышенности, плато, горные хребты и огромные горные системы. Отдельные участки суши лежат ниже уровня океана, отдельные горные вершины подняты над его уровнем на 8-9 км. Согласно современным воззрениям, континентальная кора вместе с подстилающими слоями мантии образует систему литосферных континентальных плит. В отличие от литосферы океанов континентальные плиты имеют очень древнее происхождение, их возраст оценивается в 2,5-3,8 млрд. лет. Толщина центральной части некоторых континентальных плит достигает 250 км.
Земная кора, образующая верхнюю часть литосферы, в основном слагается из 8 хим. элементов: кислород, кремний, алюминий, железо, кальций, магний, натрий и калий.
Геологические особенности коры определяются совместными действиями на неё атмосферы, гидросферы и биосферы – этих трёх самых внешних оболочек планеты.
Самые верхние оболочки Земли – гидросфера и атмосфера – заметно отличаются от других оболочек, образующих твёрдое тело планеты. По массе это совсем незначительная часть земного шара, не более 0,025% всей его массы. Но значение этих оболочек в жизни планеты огромно. Гидросфера и атмосфера возникли на ранней стадии формирования планеты.
Среди сообщества оболочек Земли особое место занимает биосфера. Она захватывает верхний слой литосферы, почти всю гидросферу и нижние слои атмосферы. Под биосферой понималась совокупность заселяющей поверхность планеты живой материи вместе со средой обитания. Значимость этой системы выходит за пределы чисто земного мира, она представляет собой звено космического масштаба.