Смекни!
smekni.com

Структурные уровни живого и этапы его эволюции (стр. 3 из 5)

2. Возникновение у животных твердого скелета: у поз­воночных - внутреннего, у членистоногих внешнего. Такое разделение определило разные пути эволюции этих типов животных. Наружный скелет членистоногих препятствовал увеличению размеров тела, поэтому все насекомые представлены сравнительно мелкими фор­мами. Внутренний скелет не ограничивал увеличения размеров тела у позвоночных, поэтому у динозавров раз­меры достигали огромных величин.

3. Появление и совершенствование централизованно-дифференцированной стадии организации животных (от кишечнополостных до млекопитающих). На этой стадии разделились насекомые и позвоночные. За счет развития центральной нервной системы у насекомых совершенствуются формы поведения по пути наследственного закрепления инстинктов. У позвоночных развивается головной мозг и система условных рефлексов, наблюдаются ярко выраженные тенденции к повышению средней выживаемости отдельных особей.

4. Финальной стадией эволюции позвоночных стало развитие группового адаптивного поведения; формирование разума как высшей формы деятельности мозга; возникновение биосоциального существа, носителя разума - человека.

4. ЭТАПЫ ЭВОЛЮЦИИ ЖИВОГО.

Представление об эволюции – постепенном развитии живых организмов от простых к сложным – оформилось ещё во времена античности. В частности, Аристотель считал, что животные эволюционируют постепенно и непрерывно. Первую целостную научную теорию эволюции – ламаркизм – создал в 1809 году Жан-Батист Ламарк, предположивший, что приобретённые признаки могут передаваться потомству. Изменения среды, по его мнению, приводят к изменению форм поведения, что вызовет необходимость использования некоторых органов по-новому, возможно, с большей или с меньшей интенсивностью. Эффективность и величина этих органов изменяются; эти признаки, согласно Ламарку, передаются следующему поколению. Так, длинная шея жирафа объяснялась по Ламарку тем, что многие поколения его короткошеих предков питались листьями деревьев, за которыми приходилось тянуться всё выше и выше. Незначительные удлинения шеи в каждом из поколений передавались следующим поколениям, пока она не достигла нынешней длины. Исследования Вейсмана поставили крест на этой теории, однако и по сей день неоламаркисты пытаются развить отдельные стороны этого учения.

Созданная Жоржем Кювье в 1812 году теория катастроф рассматривала земную историю как чередование сравнительно длинных эпох покоя и коротких катастрофических событий, резко преображавших лик планеты. Возникновение после катастрофы нового мира обычно связывалось с актом творения. Однако через несколько десятков лет катастрофизм уступил место теории естественного отбора, созданной Альфредом Уоллесом и Чарльзом Дарвиным. Согласно ей движущими силами эволюции являются наследственная изменчивость и естественный отбор. В противоположность Ламарку Дарвин считал, что эволюция определяет приспособление к внешнему миру, а не наоборот. Основной заслугой Дарвина было не введение понятия эволюции как такого, а объяснение механизмов этой эволюции.

Основной теорией эволюции XX века считается неодарвинизм (синтетическая теория эволюции), в котором взгляды Дарвина были дополнены фактами из генетики и экологии. Однако многое в эволюционной теории до сих пор остаётся неясным.

Прямой эксперимент по подтверждению той или иной теории эволюции может затянуться на миллионы лет. Поэтому важное значение в эволюционном учении имеют косвенные методы:

палеонтология;

морфология;

эмбриология;

биохимия;

биогеография;

селекция.

Палеонтология – это наука об ископаемых остатках животных и растений. Среди объектов интереса палеонтологии целые организмы (вмёрзшие в лёд, «мумифицированные» в смоле или асфальте), захороненные в песке и глинах скелетные структуры (кости, раковины и зубы), окаменелости (ткани организма заменяются кремнезёмом, карбонатом кальция или другими веществами), отпечатки и следы, копролиты (экскременты животных). Ранее считалось, что древние окаменелости – остатки драконов, гидр и прочих мифических существ; теперь учёные уверены, что эти кости принадлежат вымершим, но тем не менее реально существовавшим животным.

Несмотря на то, что с палеонтологическими находками согласуются геофизические данные и экологические соображения, одной только палеонтологии для обоснования эволюционной теории недостаточно. Этому препятствует, прежде всего, недоказуемость происхождения одних форм организмов от других, и отсутствие непрерывности в палеонтологической летописи. Впрочем, учёные готовы объяснить «недостающие звенья» тем, что далеко не все организмы погибают в условиях, благоприятных для сохранности их остатков, тем, что мёртвые организмы быстро разлагаются либо поедаются падальщиками и, наконец, тем, что не все ещё остатки найдены.

В ряде случаев удаётся найти живущие поныне «недостающие звенья» в летописи природы. Так, в XX веке было обнаружено промежуточное звено между рыбами и земноводными – кистепёрая рыба латимерия. Ещё один пример – онихофоры, промежуточная форма между кольчатыми червями и членистоногими.

При сравнительном рассмотрении органов групп животных или растений становится понятным, что они имеют сходные черты. Так, у всех цветковых растений имеются лепестки, тычинки и пестики, а конечности всех позвоночных построены по единому принципу. Органы, сходные по строению и развитию, называются гомологичными. Естественно предположить, что организмы, наделённые гомологичными органами, произошли от общего предка. Наука, изучающая сходства и различия в строении групп организмов, называется морфологией (сравнительной анатомией).

Приспосабливаясь к различным условиям среды, гомологичные органы могут видоизменяться. Этот процесс называется адаптивной радиацией (дивергенцией). Примером адаптивной радиации является наличие или отсутствие хвоста у амфибий, ведущих водный или наземный образ жизни. Сходными органами могут обладать и организмы, не связанные филогенетическим родством; такие органы называют аналогичными, а процесс их появления – конвергентной эволюцией. Примерами конвергенции являются параллельная эволюция сумчатых и плацентарных млекопитающих, образование тел похожей формы у рыб и китов. Причиной конвергентной эволюции является действие сходных условий существования в течение естественного отбора.

Некоторые структуры у отдельных организмов могут не нести никакой функции. Такие структуры называют рудиментарными. Так, рудиментарными являются копчиковые позвонки у человека или аппендикс. Наличие рудиментарных органов было бы трудно объяснить вне связи с процессом эволюции. В пользу эволюции свидетельствует и появление у отдельных особей атавизмов – органов, присутствовавших у далёких предков, но впоследствии утраченных.

Изучая эмбриональное развитие у различных групп животных (например, у разных классов позвоночных), можно обнаружить удивительное сходство между зародышами на начальных стадиях. Так, все многоклеточные животные повторяют в своём развитии одноклеточную стадию, что может служить намёком на происхождение всех животных от простейших. Далее следует стадия однослойного шара бластулы, в которой можно усмотреть возможный принцип появления многоклеточности – делящиеся клетки не расходились, а оставались рядом, впоследствии дифференцируясь. Далее все многоклеточные животные проходят через стадию гаструляции, что соответствует строению современных кишечнополостных (двухслойные организмы). Но чем дальше развивается зародыш, тем больше различий наблюдается между особями различных групп.

С 1930 года геологи делят историю Земли на два больших эона: криптозой (греч. «время скрытой жизни»), он же докембрий, и фанерозой (греч. «время явной жизни»). Фанерозойский эон начался примерно 570 миллионов лет назад и идёт по сей день; первые же геологические породы докембрия, доступные для изучения, имеют возраст около 3,5 миллиардов лет.

Криптозойский эон делят на две эры: архейскую и протерозойскую. Считается, что архей закончился (и протерозой начался) 2,5–2,7 миллиарда лет назад. Иногда из архея выделяют катархей (4,5–3 миллиарда лет назад).

В геологии с докембрием связывают крупнейшие месторождения меди, золота, железа, алюминия, свинца, урана и многих других металлов. В докембрийских отложениях отсутствует скелетная фауна, которая служит основой для построения шкалы времени в фанерозое; тем не менее, органических остатков здесь достаточно много. Первые организмы появились уже в архее и были, по-видимому, гетеротрофами, так как химические реакции, необходимые для синтеза органических веществ, слишком сложны, чтобы возникнуть у самых ранних форм жизни.

Возрастание численности гетеротрофов должно было привести к уменьшению количества пищевых ресурсов. Возникшая конкуренция ускорила появление автотрофов, способных использовать энергию света для синтеза сложные органические вещества. Первые фотосинтезирующие организмы не выделяли кислород; лишь потом появились организмы, подобные синезелёным водорослям, наполнившие атмосферу молекулярным кислородом. Полагают, что за всё время жизнедеятельности фотосинтезирующих организмов в атмосферу выделились десятки квадриллионов тонн кислорода – в несколько десятков раз больше, чем существует сейчас. Увеличение концентрации O2 привело к образованию озонового слоя в атмосфере, что в свою очередь вызвало уменьшение количества жёсткого излучения, достигающего поверхности Земли. Это, с одной стороны, уменьшило скорость эволюции, но с другой стороны, позволило образоваться устойчивым формам с полезными признаками.

Около полутора миллиардов лет назад, в верхнем протерозое, называемом также рифей, появились первые организмы с ядром в клетках. Несколько позже от колониальных жгутиконосцев произошли многоклеточные животные. В переходном периоде между криптозоем и фанерозоем (венд; 680–570 миллионов лет назад) были представлены практически все современные царства. Особенно многочисленны остатки животных – кишечнополостных, первых кольчатых червей и членистоногих.