Смекни!
smekni.com

Энтропия и ее связь с тепловой энергией (стр. 1 из 2)

РЕФЕРАТ

по дисциплине «Естествознание»

по теме: «Энтропия и ее связь с тепловой энергией»


Содержание

Введение

1.Теплота и энтропия

2.Энтропия Вселенной, теория тепловой смерти

Заключение

Список использованной литературы


Введение

Энтропия принадлежит к числу важнейших понятий физики. Энтропия как физическая величина была введена в термодинамику Р. Клаузиусом в 1865 г. и оказалась настолько важной и общезначимой, что быстро завоевала сначала другие области физики, а затем проникла и в смежные науки: химию, биологию, теорию информации и т.д.

Понятие энтропии с самого начала оказалось трудным для восприятия в отличие, например, от другой физической величины – температуры. Эта трудность сохранилась и для тех, кто впервые знакомится с термодинамикой. Она носит чисто психологический характер и связана с невозможностью непосредственного восприятия энтропии, отсутствием «градусника», который бы измерял энтропию, как измеряют температуру.

Вместе с тем более глубокое понимание температуры, завершившееся формулировкой «нулевого начала», показывает, что понятие температуры и энтропии одинаковы по сложности. Понятие температуры вводится «нулевым началом», понятие энтропии – вторым началом[1]. Термодинамика в силу феноменологического характера не может вскрыть физический смысл, как энтропии, так и температуры. Эту задачу решает статистическая физика. Статистическая интерпретация энтропии позволила математикам обобщить понятие энтропии и ввести метрическую энтропию как абстрактную величину, характеризующую поведение неустойчивых динамических систем с экспоненциальной расходимостью близких в начальный момент времени траекторий (энтропия Крылова–Колмогорова–Синая)[2]. Метрическая энтропия – абстрактное математическое понятие, слишком далеко находящееся от практических задач.

Актуальность данной темы определяется значительной ролью понятия энтропии не только для физики, но и для биологии, синергетики, современных концепций теории информации.

Целью настоящей работы является исследование физического смысла понятия энтропии и его применения для описания реальных явлений.

В связи с поставленной целью можно формулировать следующие задачи исследования:

· дать определение термина «энтропия» и рассмотреть его связь с тепловой энергией;

· рассмотреть применимость энтропии как функции состояния термодинамической системы для описания и прогноза эволюции реальных систем.

Реферат состоит из 5 разделов. В первом сформулированы цель и задачи исследования, во втором раскрывается физический смысл энтропии, в третьем дается обзор теории тепловой смерти вселенной, в четвертом сделаны основные выводы по содержанию работы, в пятом указаны первоисточники по теме работы.


1. Теплота и энтропия

Энтропия вводится вторым началом термодинамики. В формулировке А. Зоммерфельда оно звучит так: «Каждая термодинамическая система обладает функцией состояния, называемой энтропией. Энтропия вычисляется следующим образом. Система переводится из произвольно выбранного начального состояния в соответствующее конечное состояние через последовательность состояний равновесия, вычисляются все подводимые при этом порции тепла δQ, делятся каждая на соответствующую ей абсолютную температуру, и все полученные таким образом значения суммируются. При реальных (в современной терминологии – необратимых) процессах энтропия замкнутой системы возрастает»[3].

Таким образом,

(1)

или

(2)

Подчеркнем, что выбор отдельных обратимых процессов в уравнении 1 или пути интегрирования в уравнении 2 могут не иметь ничего общего с тем, каким образом в действительности система переходит из состояния В в состояние А. Реальные процессы, как правило, необратимы. Однако в равенствах (1) и (2) δQ соответствуют обратимым переходам. Поскольку энтропия является функцией состояния, то есть величиной, которая не зависит от того, каким путем было достигнуто это состояние, то выбор пути обратимого процесса не имеет значения. В качестве примера рассмотрим изменение энтропии при расширении газа в пустоту. Пусть первоначально газ находился в объеме V1, объем V2- V1 пустой (рис. 1).

Рис.1

После удаления перегородки газ свободно расширяется, занимая весь объем V2. Этот процесс является необратимым. Газ самопроизвольно не может вернуться в первоначальное состояние, то есть снова оказаться в объеме V1 (вероятность такой гигантской флуктуации чрезвычайно мала). В соответствии со вторым началом энтропия в таком процессе должна возрастать. Вместе с тем величина

(3)

не является энтропией. В формуле (2) стоит δQ, соответствующее мысленному обратимому процессу. В качестве такого мыслимого процесса удобно выбрать обратимый изотермический процесс расширения с участием поршня и подводом тепла δQ(рис. 2).

Рис.2

В этом случае в соответствии с первым началом термодинамики δQ = dU + pdV. Если ограничиться случаем идеального газа, для которого U зависит только от температуры и поэтому dU= 0, то δQ = pdV и

(4)

Расчет проведен для одного моля газа, поэтому pV = RT[4].

Вернемся к анализу самого понятия энтропии. Второе начало термодинамики вводит энтропию формальным путем как некую новую функцию состояния, не вскрывая ее физического смысла. Термодинамика не устанавливает связи энтропии с внутренними молекулярными свойствами системы и не дает способа, с помощью которого эту связь можно установить. В этом состоит основная трудность для всех начинающих изучать термодинамику. Свойства и физический смысл энтропии раскрываются, как и в случае с температурой, в рамках статистической физики. Прежде чем обсуждать физический смысл энтропии, необходимо ответить на вопрос, зачем потребовалось вводить это понятие. В практике тепловых измерений точно фиксируется количество теплоты, переданное и отнятое у тела в определенном процессе.

Например, при нагревании 1 г воды на 1°С необходимо затратить 1 калорию (1 кал = 4,1868 Дж). Однако говорить о количестве теплоты, содержащейся в теле, бессмысленно. Тепло может переходить в работу, создаваться при трении, но не сохраняется. В общем случае можно сказать, что тепло передается, но не сохраняется. Сохраняющейся величиной в определенных условиях является энтропия. Например, энтропия сохраняется при обратимом адиабатическом процессе, когда отсутствует передача тепла. Изменение энтропии при возвращении системы в исходное состояние после произвольного кругового обратимого процесса также равно нулю. Это утверждение следует, например, из анализа цикла Карно (рис. 3). Коэффициент полезного действия в цикле Карно

(5)

откуда следует равенство

(6)

имеющее ясный физический смысл. Приращение энтропии на изотерме 1–2 компенсируется убыванием энтропии на изотерме 3–4. Изменение энтропии на адиабатах 2–3 и 4–1 равно нулю.

Из факта возвращения энтропии к своему первоначальному значению после произвольного обратимого кругового процесса следует вывод, что энтропия в данном состоянии не зависит от способа достижения этого состояния, а определяется параметрами этого состояния, то есть является функцией состояния, как утверждает второе начало. Таким образом, можно говорить о количестве энтропии в данном состоянии. В этом принципиальное отличие энтропии от теплоты. В общем случае для энтропии нет закона сохранения. При обратимых процессах энтропия может переходить от системы к окружающей среде и наоборот. При необратимых процессах возникающая в системе энтропия всегда положительна.

Необходимость введения энтропии не ограничивается потребностью замены количества тепла на новую функцию состояния. Все термодинамические величины образуют пары, их называют парами сопряженных величин, например, давление и объем. Они входят в выражение для работы ΔА = pΔV. Какая величина сопряжена температуре? Поскольку выражение для количества тепла, переданного в обратимом процессе, имеет вид ΔQ = TΔS, то можно говорить, что сопряженной величиной для температуры является энтропия. Среди сопряженных величин одна зависит от объема (например, S в паре S и Т), другая нет (например, р в паре р и V).

Таким образом, с введением энтропии завершился этап формирования основных понятий термодинамики.

Физический смысл энтропии выясняется при рассмотрении микросостояний вещества. Л. Больцман был первым, кто установил связь энтропии с вероятностью состояния. В формулировке М. Планка утверждение, выражающее эту связь и называемое принципом Больцмана, представляется простой формулой

S = kBlnW. (7)

Сам Больцман никогда не писал этой формулы. Это сделал Планк. Ему же принадлежит введение постоянной Больцмана kB. Термин «принцип Больцмана» был введен А. Эйнштейном. Термодинамическая вероятность состояния W или статистический вес этого состояния – это число способов (число микросостояний), с помощью которых можно реализовать данное макросостояние. На квантовом языке статистический вес – это число различных квантовых микросостояний, реализующих данное макросостояние с данной энергией.