Смекни!
smekni.com

Закономерности и случайности (стр. 3 из 6)

Когда в северном полушарии стоит лето, Южный полюс отклонен от Солнца, и в южном полушарии зима. Времена года в южном и северном полушариях всегда противоположны. 21 декабря Солнце в полдень находится в зените в самых южных точках, где это вообще случается, а именно на тропике Козерога. Это второе солнцестояние в году - середина лета в южном полушарии.

Примерно 21 марта и 23 сентября, когда полуденное Солнце в зените находится на экваторе, во всем мире день продолжается 12 часов и ночь длится тоже 12 часов. Эти дни называются днями весеннего и осеннего равноденствия.

Високосные годы. Мы говорим, что Земля совершает весь свой путь вокруг Солнца за год, но этот год не продолжается ровно 365 суток. Точная продолжительность года, например, от одного дня середины зимы до другого, равна 365,24219 суток. Если бы каждые четыре года мы не добавляли один дополнительный день, то вскоре времена года перестали бы согласовываться с месяцами, что было бы крайне неудобно. Чтобы природный год еще точнее совпадал с календарным, установлены правила, по которым года с номерами, оканчивающимися двумя нулями, например 1900 год, не являются високосными, если только номер года не делится на 400. Так что 2000-й год будет високосным, а 2100-й - не будет. Эта система была введена в 1582 г., заменив календарь Юлия Цезаря (юлианский календарь).

2.3. Можно ли точно рассчитать время Солнечного затмения? А погоду в это время?

Миновало лунное затмение. Луна продолжает свое движение по небу вокруг Земли и постепенно теряет округлость, ущербляется. Через неделю после полнолуния настала последняя четверть, а еще через неделю Луна пропала в лучах утреннего Солнца: подошло новолуние. В этот момент может произойти солнечное затмение - ведь именно в новолуние Луна проходит между Солнцем и Землей. Астрономы заранее знают, когда и где будет наблюдаться солнечное затмение, и сообщают об этом в астрономических календарях.

Точно в назначенный час и минуту сквозь темное стекло видно, как на яркий диск Солнца наползает с правого края что-то черное, как появляется на нем черная лунка. Она постепенно разрастается, пока, наконец солнечный круг не примет вид узкого серпа. Быстро ослабевает дневной свет. Вот Солнце полностью прячется за темной заслонкой, гаснет последний дневной луч, и тьма, кажутся тем глубже, чем она внезапнее, расстилается вокруг, повергая человека и всю природу в безмолвное удивление.

Посмотрим на Землю и Луну со стороны, чтобы понять, где и как протекает солнечное затмение. Проходя между Солнцем и Землей, маленькая Луна не может полностью затенить Землю. Короткая лунная тень притемняет на Земле лишь небольшой кружок. Только здесь можно в этот момент наблюдать полное затмение Солнца. Но Луна движется по орбите, и Земля вращается под тенью. Поэтому тень как бы прочерчивает на Земле полосу полного затмения шириной около 100 км. Если теневая дорожка пройдет от нас в 3-4 тыс. километров или дальше, то мы не увидим никакого затмения. А если мы окажемся вблизи полосы полного затмения, для нас только часть Солнца заслоняется Луной, и будет наблюдаться частное затмение.

В некоторое новолуние острие лунной тени проходит мимо земного шар, а на Землю падает только полутень. Тогда календарь объявляет о частном затмении Солнца. Если в день затмения Луна, перемещаясь по своей вытянутой орбите, будет находиться на значительном удалении от Земли, то видимый диск ее окажется, мал и не сможет полностью покрыть Солнце. Поэтому в середине затмения края Солнца будут выглядывать из-за Луны, мешая видеть и фотографировать корону. Это - кольцеобразное затмение.

В наше время затмения с большой точностью вычислены на тысячу лет назад и сотни лет вперед. Затмения, рассчитанные для далекого прошлого, позволяют историкам совершенно точно датировать события, произошедшие в день и год затмения. Хотя в целом на Земле солнечные затмения случаются чаще, чем лунные, в какой-то определенной местности полные затмения Солнца наблюдаются крайне редко: в среднем раз в 300 лет. Например, за всю историю Москвы ее “посетили” четыре полных солнечных затмения: в 1140, 1450, 1476 и 1887 гг. Следующее полное затмение москвичи увидят 16 октября 2126 г. Астрономические календари публикуют карты полосы полного затмения и прилегающих зон частного затмения. Так что специалисты и астрономы-любители могут “не ждать милости от природы”, а заранее выбрать удобное место для экспедиции.

Полное затмение - лучшее время для изучения солнечной атмосферы: серебристой короны и более низкого слоя - красной хромосферы, над которой вздымаются огненные фонтаны протуберанцев. Правда, астрономы ухитряются все это видеть и в обычный солнечный день, устраивая заслонку солнечному диску прямо в трубе телескопа.

2.4. Привести примеры упорядоченного движения воздуха?

Несколько слов о температуре воздуха или газа (в дальнейшем газа). Классическое понятие температуры подразумевает именно хаотическое (наиболее распространенное в природе) движение молекул газа, скорость движения молекул с увеличением температуры увеличивается, и это однозначно определяет классическую температуру газа, т.е. энергию хаотического движения и столкновения молекул газа. Хаотические направления движений отдельных молекул газа подразумевает и хаотические столкновения молекул, как между собой, так и со стенками объема или предметов в нем, и образованное таким образом давление газа, связанное с температурой. Данное понятие температуры прекрасно подходит для основных состояний газа, но, к сожалению не для всех.

Рассмотрим возможный случай, когда происходит нарушение данного закона температуры газа, вернее неприменимость классического понятия температуры. В реальных условиях существуют такие особенные состояния движения газа, когда понятие температуры теряет смысл и соответственно наблюдаются, на первый взгляд трудно объяснимые эффекты. А на самом деле все достаточно просто. Самый характерный пример: вихревое движение газа, сопровождаемый эффектом Ранка, т.е. мощным переносом тепла от центральной части вихря к периферии. Что бы разобраться в данном процессе, рассмотрим простую теоретическую ситуацию: в определенном объеме газа, имеющему температуру Т1, особым образом образуется локальная область с упорядоченным тепловым движением молекул газа в одну сторону, своеобразный поток газа со скоростью теплового движения молекул. Необходимо иметь ввиду, что тепловые скорости движения молекул близки к скорости распространения упругих колебаний, таких как звук; т.е. составляют сотни метров в секунду. Какие характерные особенности будет иметь данная локальная область? Кроме высокой скорости движения потока данная область будет иметь значительно более низкую температуру Т2, чем остальная масса газа, хотя скорости движения молекул практически не отличаются, но столкновений между ними не наблюдается (по сравнению с хаотическим движением). Дополнительно данная область должна иметь изначально пониженное давление, хотя и понятие давления, для скоростного потока относительно. Остается отметить, что нарушений закона сохранения энергии не наблюдается, локальная область газа приобрела большую кинетическую энергию в ущерб классической тепловой. И данная кинетическая энергия может совершить определенную работу, либо опять превратиться в тепловую при хаотическом торможении потока газа. При совершении работы произойдет еще большее охлаждение газа в обычном понимании.

Сделаем определенные выводы. Понятие температура газа относительно. Исходя из выше сказанного следует, что газ может иметь, в зависимости от состояния, две температуры. Одна – для хаотического движение молекул, и вторая для упорядоченного движения молекул газа. А если говорить точнее, необходимо вводить понятие относительной температуры газа. Которая будет характеризовать температуру любого участка газ, через определенное отношение температур Т1 и Т2, как отношение 100% хаотического движения молекул к полностью упорядоченному движению. Поскольку классическое понятие температуры не всегда подходит для характеристик возможных состояний газовой среды. Подобное утверждение с некоторой осторожностью можно сделать и для понятия давление.

Примеры. Упорядоченное тепловое движение молекул газа встречается часто даже в природе, не говоря уже о творениях человека. Вихревое движение воздуха, торнадо, смерчи – это движение воздуха. Температура внутри подобного вихря значительно ниже температуры окружающего воздуха. Вихревое движение жидкости имеет подобные особенности и достаточно широко применяется в технике, но полное применение подобного явления пока не наблюдается, хотя перспективы громадны.

2.5. С какой средней скоростью движутся молекулы воздуха при температуре +20 0С? А при температуре –20 0C?

Температура - величина, характеризующая степень теплового состояния тела (газа) или скорость хаотического движения молекул (чем выше температура, тем больше скорость их движения, и наоборот). Температуру воздуха можно измерять по двум шкалам: Цельсия и абсолютной шкале Кельвина. За нуль градусов по шкале Цельсия принято считать температуру таяния льда, а за 100° - температуру кипения воды при атмосферном давлении, равном 760 мм рт. ст. Если известна температура воздуха у земли, то можно определить температуру воздуха в тропосфере на любой высоте по формуле:

tH=tO - 6,5Н,

где tн - температура воздуха на определяемой высоте;

to - температура воздуха у земли;

Н - заданная высота, км.

В расчетах скоростей движения молекул воздуха при 20°С были получены данные, представленные в табл.

2.6. В каких единицах измеряется хаос?

Хаос - это многомерный план, имеющий бесконечное количество временных и пространственных измерений. Космос в отличие от Хаоса имеет всего три пространственных измерения и одно временное. Космос каузален, то есть, ограничен законом причины и следствия, в то время как Хаос абсолютно акаузален (вне каузален) и свободен от любых ограничений.