Смекни!
smekni.com

Панорама современного естествознания (стр. 11 из 17)

Совокупность свойств, наблюдаемых у нашей Вселенной (физическое состояние, химический состав, структура, расширение и связанное с ним красное смещение в спектрах далеких объектов), необходима для обеспечения возможности возникновения и существования в ней жизни. Итак, во Вселенной естественно возникают общие предпосылки для появления и развития жизни. Речь может и должна идти о жизни в тех ее рамках, в каких она известна нам. Именно поэтому специально обращалось внимание на необходимость для возникновения жизни предварительного образования во Вселенной С, О, N, Р и др., а также тяжелых элементов, без которых жизнь, во всяком случае известного нам типа, совершенно немыслима. Может быть, мы еще не заметили pоли и даже существования некоторых фундаментальных для жизни космических факторов, открытие которых в будущем существенно изменит наши представления о распространенности во Вселенной условий, в которых может появиться жизнь.

Земля вместе с Солнцем каждые 200—250 млн лет приближалась к центру Галактики, где, видимо, и тогда происходили мощные взрывы не очень понятного происхождения, следы каких наблюдаются и сейчас. Они воздействовали на всю систему взрывными волнами, потоками жестких космических лучей. Трудно сказать, каковы могли быть их влияния на Землю, но, например, длина галактического года подозрительно близка к периодичности великих оледенений истории Земли.

Молодую Землю заливали космические лучи солнечного и галактического (а возможно, и метагалактического) происхождения; она погружалась в газовые туманности, сброшенные при взрывах сверхновых звезд, которые вспыхивали в 100 раз чаще, чем ныне, так как количество дозвездного вещества в Галактике было много больше, т. е. и процесс звездообразования тел интенсивнее. Очень близкий взрыв сверхновой мог оказать и шоковое воздействие на биосферу Земли, особенно если бы он пришелся на период исчезновения геомагнитного поля, при смене его полярности. Говоря о космических факторах развития биосферы, не следует забывать, что с точки зрения астрофизики Земля, собственно, находится в атмосфере Солнца. Воздействие астрономических факторов могло иметь для жизни даже глобальный характер (например, выход температуры за допустимые границы; чрезмерное усиление радиационного потока, ультрафиолетового излучения). Это позволило поставить даже вопрос — однократно ли возникала жизнь на Земле?


Выводы

1. Среди известных гипотез происхождения жизни наиболее распространены: креационизм, самопроизвольное возникновение, вечное существование, панспермия, биохимический путь.

2. Для научного изучения происхождения жизни необходимы, прежде всего, данные о физико-химических условиях на ранней Земле. Такие данные связаны как с геологической эволюцией планеты, так и с эволюцией химических элементов Солнечной системы и солнечной активностью.

3. Из большого числа химических элементов для жизни необходимы только 16, а водород, углерод, кислород и азот составляют почти 99% живой материи. Уникальными свойствами обладает углерод, и наша жизнь называется углеродной, или органической. Четырехвалентность углерода приводит к огромному числу его соединений, которыми занимается органическая химия. Углерод образует сложные молекулы, представляющие собой кольца и цепи, обеспечивающие разнообразие органических соединений.

4. Аминокислоты — важный для жизни класс органических соединений. В живых организмах они используются для синтеза белков: растения могут синтезировать их из простых веществ, а в животные организмы они должны поступать с пищей, поэтому их называют незаменимыми. Из четырех нуклеотидов построены и другие крупные молекулы - нуклеиновые кислоты, тоже входящие в состав живой клетки. Нуклеиновые кислоты представляют собой двухцепочные молекулы.

5. Современные научные гипотезы происхождения жизни связаны с образованием в определенных условиях более сложноорганизованных молекул -коагулянтов, гелей коацерватов. У этих коллоидных образований, как считали Опарин и Холдейн, на поверхности могут происходить процессы, напоминающие метаболизм живых организмов. Коацерваты способны делиться на части, увеличиваться в размерах, поглощать более простые молекулы. Гипотеза Опарина—Холдейна проверялась на установке Меллера, где искровой разряд пропускался через смесь метана, аммиака, водорода и воды, что имитировало условия первичной Земли. Были синтезированы простейшие аминокислоты. Живые тела, существующие на Земле, представляют собой открытые, саморегулирующиеся и самопроизводящие системы, построенные из биополимеров — белков и нуклеиновых кислот.


IV. Человек: здоровье, эмоции, творчество, работоспособность, биоэтика.

Человек есть мера всем вещам — существованию — существующих и несуществованию — несуществующих.

Протагор (V в. п. до н.э.)

1. Физиология человека

Физиология человека как наука о жизнедеятельности здорового организма человека и функциях его составных частей: клеток, тканей, органов и систем — зародилась в XVIII столетии. Основоположником физиологии как самостоятельной отрасли знаний является английский ученый Уильям Гарвей, описавший большой и малый круги кровообращения и 1628 г. Физиология человека базируется на функционировании основных систем организма людей, таких как кровеносная, лимфатическая, пищеварительная, нервная, дыхательная и др. Физиологи Д. Эклс, А. Хаксли, А. Ходжкин ycтановили, что ионные механизмы важнейших физиологических процессов — возбуждения и торможения, за что были отмечены Нобелевской премией (1963 г). Как известно, нервы и мышцы относятся к возбудимым образованиям. Это значит, в ответ на раздражение в них возникают различные электрические потенциалы. Согласно ионно-мембранной теории биоэлектрических потенциалов, созданной в середине XX в. А. Ходжкиным, Э. Хаксли, Б. Катцом, они обусловлены неодинаковой концентрацией ионов К+, Na+, Сl- внутри и вне клетки и различной проницаемостью для них поверхностной мембраны. Позже были открыты медиаторы (нейротрансмиттеры), что легло в основу учения о химическом механизме передачи нервного импульса.

Разработка И. П. Павловым учения об условных рефлексах позволило ему не только получить подтверждение сформированной И.М. Сеченовым концепции о зависимости всех функций организма от окружающей среды, но и создать новое учение — физиологию высшей нервной деятельности человека и животных.

Организм и окружающая среда — это единая система, так между ними происходит непрерывный обмен веществом и энергией (рис.1). Энергия необходима организму для поддержания всех его жизненно важных функций. Она выделяется за счет окисления сложных органических соединений, т. е. белков, жиров и углеводов. Резервирование энергии происходит в основном в виде макроэргических связей АТФ (адезонинтрифосфорной кислоты).

ПРИХОД ВЕЩЕСТВ
Белки, жиры и углеводы пищи-белки, жиры и углеводы каловых масс
АссимиляцияОБМЕН ВЕЩЕСТВ И ЭНЕРГИИдиссимиляция

РАСХОД ВЕЩЕСТВРасщепление белков до H2O и CO2 и азотосодержащих веществ; жиров до H2O и CO2; углеводов до H2O и CO2

Рис. 1. Понятие об обмене веществ и энергии

АТФ — это универсальный источник энергии в организме человека. Высвобождение энергии происходит за счет гидролиза АТФ, связанного с разрывом химической связи концевой фосфатной группы. Часть этой энергии выделяется в виде теплоты, необходимой для теплорегуляции. Так, при сокращении мышц около 80% энергии теряется в виде тепла и только 20% превращается в механическую работу.

Рис. 2. Принципиальная схема превращения энергии в организме

На рисунке 2 показана принципиальная схема превращения энергии в организме.

Процессы обмена веществ, происходящие на клеточном и тканевом уровнях в организме человека, называют метаболизмом. Он состоит из двух противоположных процессов: анаболизма и катаболизма. Анаболизм — это процесс биосинтеза органических веществ, которые обеспечивают рост, развитие организма, обновление его структур и накопление структурной энергии. Катаболизм — это процесс расщепления или окисления сложных молекул до простых веществ с выделением энергии и резервированием ее в виде АТФ. Эти процессы обеспечивают в организме белковый, углеводный и жировой обмены.

Белки — это биополимеры, в состав которых входят около 20 аминокислот, содержащих азот. Функции белков многообразны: пластическая (строительная), энергетическая, транспортная, ферментативная и др. При сгорании 1 г белка в организме высвобождается 4,1 ккал энергии. Суточная потребность человека в белках не менее 85—90 г.