Смекни!
smekni.com

Белки и ферменты (стр. 2 из 3)

· Сократительная: ее выполняют белки, в результате взаимодействия которых происходит передвижение в пространстве, сокращение и расслабление сердца, движение других внутренних органов.

· Регуляторная: выполняется белками-регуляторами обмена веществ. Они относятся к гормонам, которые образуются в железах внутренней секреции. Некоторых органах и тканях организма. Часть гормонов (но не все) животных и человека являются белками. Так белковый гормон поджелудочной железы – инсулин активизирует захват клетками молекул глюкозы и расщепление или запасание их внутри клетки. Если не хватает инсулина, то глюкоза накапливается в крови в избытке. Клетки без помощи инсулина не могут ее захватить – они голодают. Именно в этом причина развития диабета.

· Питательная: осуществляется белками, которые являются резервными, или питательными. Например белки яйца обеспечивают рост и развитие плода, белки молока служат источником питания для новорожденного. Коме того они могут служить источником энергии для клетки. При недостатке углеводов или жиров окисляются молекулы аминокислот. Освободившаяся при этом энергия используется на поддержание процессов жизнедеятельности организма.

Перечисленные функции белков являются наиболее важными, но ими не ограничивается значение белков для жизни.

Денатурация белков: под действием ионизирующейрадиации, высокой температуры, сильного взбалтывания,экстремальных значений pH, а также ряда органических растворителей, таких как спирт или ацетон, белки изменяют свое естественное состояние. Это нарушение природной структуры белка и называют денатурацией. Подавляющее большинство белков утрачивают при этом биологическую активность, хотя первичная структура их после денатурации не меняется. Дело в том, что в процессе денатурации нарушается вторичная, третичная и четвертичная структуры, обусловленные слабыми взаимодействиями между кислотными остатками, а ковалентные пептидные связи не разрываются. Необратимую денатурацию можно наблюдать при нагревании жидкого и прозрачного белка куриного яйца: он становится плотным и непрозрачным. Денатурация может быть и обратимой. После устранения денатурирующего фактора многие белки способны вернуть естественную форму, т. е. ренатурировать.

Способность белков к обратимому изменению пространственной структуры в ответ на действие физических или химических факторов лежит в основе раздражимости – важнейшего свойства всех живых существ.

2.Ферменты

Фермент (от лат. Fermentum – закваска), энзимы, специфические катализаторы, присутствующие во всех живых клетках. Почти все биохимические реакции, протекающие в организме и в сочетании составляющие его обмен веществ, катализируются соответствующими ферментами. Направляя и регулируя обмен веществ, они играют жизненно важную роль во всех процессах жизнедеятельности.

Как всякие катализаторы, ферменты снижают энергию активации, необходимую для осуществления той или иной химической реакции, направляя ее обходным путем – через промежуточные реакции, которые требуют значительно меньше энергии активации.

Пример:

Реакция: АБ-А+Б в присутствии фермента идет следующим образом:

АБ+Ф-АБФ и далее: АБФ-БФ+А и БФ-Б+Ф

Подобное понижение активации под влиянием ферментов— средство перераспределения электронных плотностей и некоторой деформации молекул субстрата. Эта деформация, ослабляя внутримолекулярные связи, приводит к понижению необходимой энергии активации и, следовательно, ускоряет течение реакции.

История изучения ферментов:

В 1814г русский химик Кирхгоф открыл ферментативное действие водных вытяжек из проросшего ячменя, расщеплявших крахмал до сахара. Можно считать, что эти работы положили начало ферментологии, как самостоятельному разделу биологической химии. В 1833г французскими химиками Пайеном и Персо впервые был выделен из солода препарат фермента амилазы, что способствовало развитию препаративной химии ферментов. В середине 19 века разгорелась дискуссия о природе брожения. Пастер говорил о том, что брожение вызывается лишь живыми микроорганизмами и что процесс их брожения неразрывно связан с их жизнедеятельностью. Либих и его сторонники отстаивали химическую природу брожения и считали, что оно является следствием образования в клетках микроорганизмов растворимых ферментов. Однако все попытки выделить из дрожжевых клеток растворимый фермент, способный вызвать брожение, не удавались. Эта дискуссия была разрешена в 1897г Бухнером, который, растирая дрожжи с инфузорной землей, выделил из них бесклеточный растворимый ферментный препарат, вызывавший спиртовое брожение. Открытие Бунхера утвердило материалистическое понимание природы брожения и имело большое значение для развития, как ферментологии, так и всей биохимии.

С середины 20 века благодаря развитию методов физико-химического анализа и методов белковой химии расшифрована первичная структура многих ферментов. Так, работами американских биохимиков Мура, Стайна, Анфинсена показано, что фермент рибонуклеаза из поджелудочной железы быка представляет собой полипептидную цепочку, состоящую из 124 аминокислотных остатков, соединенных в 4 местах дисульфидными связями.

С помощью рентгеноструктурного анализа расшифрована вторичная и третичная структура ряда ферментов. Так, методом рентгеноструктурного анализа английский ученый Филипс в 1965 установил трехмерную структуру лизоцима. Показано, что многие ферменты обладают также четвертичной структурой, то есть их молекула состоит из нескольких идентичных или различных по составу и структуре белковых субъединиц.

Общая характеристика ферментов:

Все ферменты разделяются на две большие группы:

· Однокомпонентные, то есть состоящие исключительно из белка

· Двухкомпонентные, состоящие из белка, называемым апоферментом (или белковых носителей), и небелковой части, называемой простетической группой (или активной группой).

Благодаря работам Варбурга, Теореля, Линена, Липмана и Лелуара установлено, что простетические группы многих ферментов представляют собой производные витаминов и нуклеотидов. Таким образом была открыта важнейшая функциональная связь между ферментами, витаминами и нуклеотидами, являющимися строительными «кирпичиками» нуклеиновых кислот.

Многие ферменты содержат металлы, без которых фермент не активен. Эти металлы, называют кофакторами. Так, пероксидаза и каталаза содержат железо, аскорбинатоксидаза, катализирующая окисление аскорбиновой кислоты, - медь, алкогольдегидрогенеаза, окисляющая спирты и соответствующие альдегиды, - цинк.

Условия действия ферментов:

Действие ферментов зависит от ряда факторов, прежде всего от температуры и реакции среды (pH). Оптимальная температура, при которой активность ферментов наиболее высока, находится обычно в пределах 40 – 50˚С. При более низких температурах скорость ферментативных реакций снижается, а при температурах близких к 0˚С практически полностью прекращается. При повышении температуры, скорость также снижается и, наконец, полностью прекращается. Снижение интенсивности ферментов при повышении температуры, объясняется главным образом разрушением входящего в состав фермента белка. Поскольку белки в сухом состоянии денатурируются значительно медленнее, чем оводненные (в виде белкового геля или раствора), инактивирование ферментов в сухом состоянии происходит гораздо медленнее, чем в присутствии влаги. Поэтому сухие споры бактерий или сухие семена могут выдержать нагревание до гораздо более высоких температур, чем семена и споры более увлажненные.

Важным фактором, от которого зависит действие ферментов, как установил впервые Сёренсен является активная реакция среды – pH. Отдельные ферменты различаются по оптимальной для их действия величине pH. Так, например пепсин, содержащийся в желудочном соке, наиболее активен в сильнокислой среде

(pH 1 – 2);трипсин – протеолитический фермент , выделяемый поджелудочной железой, имеет оптимум действия в слабощелочной среде (pH 8 – 9); папаин, фермент растительного происхождения, оптимально действует в слабокислой среде

(pH 5 – 6).

Действие ферментов также зависит от присутствия специфических активаторов или ингибиторов. Так фермент поджелудочной железы энтерокиназа превращает неактивный трипсиноген в активный трипсин. Подобные неактивные ферменты, содержащиеся в клетках и в секретах различных желез, называются проферментами. Фермент может быть конкурентным и неконкурентным. При конкурентном ингибировании ингибитор и субстрат конкурируют между собой, стремясь вытеснить один другого из фермент – субстратного комплекса. Действие конкурентного ингибитора снимается высокими концентрациями субстрата, в то время как действие неконкурентного ингибитора в этих условиях сохраняется. Действие на фермент специфических активаторов и ингибиторов имеет большое значение для регулирования ферментативных процессов в организме.

Классификация и номенклатура ферментов:

По рекомендации Международного биохимического союза ферменты разделяют на 6 классов:

1. оксидоредуктазы: включает в себя ферменты, катализирующие окислительно-восстановительные реакции, и разделяется на 14 подклассов в зависимости от природы той группы в молекуле субстрата, которая подвергается окислению.

2. трансферазы: объединяет ферменты, катализирующие реакции переноса групп, подразделяется на 8 подклассов в зависимости от природы переносимых групп, которыми могут быть одноуглеродные или гликозильные остатки, азотистые или содержащие серу группы и т.д.

3. гидролазы: принадлежат ферменты, катализирующие гидролитическое расщепление различных соединений.