Тем не менее было показано, что некоторые небольшие мембранные белки включаются в лнпидные бислон спонтанно. К ним относятся цитохром Ь$ с единственным гидрофобным якорем на С-конце и пробелок оболочки бактериофага М13, предположительно содержащий две трансмембранные спирали, которые, возможно, и встраиваются в бислой с образованием спиральной шпильки или петли. Пробелок оболочки содержит сигнальную последовательность из 23 остатков, обычно отщепляемую при сборке в цитоплазматической мембране Е. coli. Зрелый белок имеет кислый N-конец, обращенный в периплазматическое пространство, трансмембранный сегмент и основный С-конец, обращенный в цитоплазму. Он спонтанно встраивается в фосфолипидные липосомы, причем скорость его сборки in vivo сильно замедляется, если в трансмембранном участке или на С-конце зрелого белка имеются мутации, что согласуется с моделью, в рамках которой два гидрофобных сегмента могут спонтанно встраиваться в липидный бислой в виде шпильки или петли. На рис. 10.9 представлена схема встраивания этого белка в мембрану. Интересно, что сборка пробелка оболочки вируса М13 может осуществляться и с помощью микросом млекопитающих, причем этот процесс требует АТР, воз
Результаты исследования пробелка оболочки бактериофага М13 убедительно проиллюстрировали справедливость механизма самопроизвольного встраивания белков в мембрану без участия белков-посредников. Предполагается, что водорастворимый предшественник приобретает конформацию, обеспечивающую встраивание его в мембрану, при взаимодействии с бислоем. Эта обобщенная модель была предложена как часть «мембранной триггерной гипотезы». Сходный механизм был предложен для сборки по крайней мере каких-то участков более сложных мембранных белков, например переносчика глюкозы. Заметим, что механизмы самопроизвольного встраивания путем образования петли или спиральной шпильки могут рассматриваться только в тех случаях, когда нет тесного сопряжения между мембранным переносом и трансляцией.
Еще один пример, иллюстрирующий важную роль самопроизвольного встраивания в липидный бислой при переносе, — это апо-цитохром с, предшественник митохоидриальиого цитохрома с. Ои ие отличается по длине от зрелого цитохрома с, но лишен ковалентно связанного гема с, который присоединяется к молекуле только после переноса белка через наружную митохондриальную мембрану. Зрелый белок содержится в межмембранном пространстве митохондрий. Показано, что апоцитохром с, связываясь с анионными липидами в фосфолипидных везикулах, может проникать в липидный бислой и пересекать его. Механизм такой замечательной активности до конца неизвестен; возможно, при этом происходит существенная перегруппировка липидов. Удивительно, что в этом полипептиде нет протяженных гидрофобных участков и 40% аминокислотных остатков заряжены!
Применимы ли данные, полученные на искусственных фосфоли-пидных везикулах, к системам in vivo, неясно, но, согласно одной из моделей, апоцитохром с должен проникнуть в наружную мембрану достаточно глубоко для того, чтобы он мог связаться со специфическим белковым рецептором на внутренней поверхности мембраны. Впрочем, при этом не исключается наличие канала. In vivo ковалентное присоединение гема удерживает зрелый белок в межмембранном пространстве и, возможно, приводит к конфор-мационным изменениям, необходимым для дальнейшего переноса.
К самопроизвольному встраиванию в липидные бислой и биомембраны способны и многие другие водорастворимые белки, хотя механизм такого встраивания остается неизвестным. Основными представителями являются токсины и белки, образующие поры. Все построенные модели обычно предполагают, что в белке происходят конформационные изменения, в результате которых гидрофобные остатки, упрятанные внутри водорастворимой структуры, экспонируются в липидный бислой при включении в него белка. Примерами такого рода служат а-токсин из Staphylococcus aureus, компонент комплемента С9 и ко-лицин А. Во многих случаях для инициации конформационно-го перехода необходимо понизить рН. Вряд ли эти токсины и белки, образующие поры, могут служить модельными системами, пригодными для изучения сборки многих мембранных белков. Однако они четко показывают, что водорастворимые предшественники действительно могут самопроизвольно укладываться внутри бислоя, образуя сложные трансмембранные биохимически активные зрелые формы.
Таким образом, если речь идет о переносе линейно вытянутого полнпептида, то при энергетических расчетах необходимо основываться на наличии поры, заполненной водой, или канала, способного обеспечить гидрофильное окружение для заряженных или полярных групп. Эта модель приемлема для большинства белков, хотя имеются многочисленные примеры, когда происходит самопроизвольное включение отдельных спиралей или доменов в липидный бислой. Если специфические каналы для переноса белков действительно существуют, они должны быть очень хитро устроены, поскольку через них проходят практически любые полипептнды и задерживаются ионы и небольшие метаболиты. Исследование таких пор методом пэтч-клампа не проводилось.
5. ПОЛИПЕПТИДНЫЕ СИГНАЛЫ, ОТВЕЧАЮЩИЕ ЗА СОРТИРОВКУ БЕЛКОВ И ВСТРАИВАНИЕ ИХ В МЕМБРАНЫ
Об аппарате и механизме переноса мы не знаем почти ничего; немного больше известно о сигнальных последовательностях, присутствующих в полипептидах и направляющих каждый белок в нужное место. Успехов в этой области удалось достичь благодаря использованию техники рекомбинантных ДНК. С ее помощью были сконструированы гибридные полипептиды, в которые была включена тестируемая аминокислотная последовательность, принадлежащая другому белку. Таким образом можно было изучать влияние предполагаемой сигнальной последовательности на локализацию «белка-пассажира». Преимущества такого подхода удается использовать только в том случае, если вся информация, определяющая локализацию конечного продукта, заключена в первичной последовательности сигнала и если «белок-пассажир» является нейтральным участником процесса и, что существенно, подчиняется сигналу. Это условие выполняется во многих случаях, но известны и такие примеры, когда эффективность переноса или даже конечная локализация зависят от «белка-пассажира». Если «белок-пассажир» находится в конформации, не способной к переносу, то может происходить блокирование переноса химерного белка. Кроме того, функция некоторых сигнальных последовательностей зависит от их локализации в полипептиде или от взаимодействий с другими участками полипептидной цепи. Несмотря на все эти трудности, удалось получить много ценных данных о разнообразии сигнальных последовательностей.
Сигнальная последовательность, определяющая встраивание в эндоплазматический ретикулум
У большинства белков, встроенных в мембрану эндоплазматического ретикулума или пересекающих ее, на N-конце имеется «корот-коживущий» сигнальный пептид. Эта сигнальная последовательность непосредственно взаимодействует по крайней мере с двумя рецепторами, один из которых растворим, а другой находится в мембране. Можно было бы ожидать, что аминокислотная последовательность этого сигнального пептида будет очень консервативной и примерно одинаковой у всех переносимых белков, но ожидания эти не оправдались. Эти сигнальные участки не отличаются постоянством ни в отношении длины, ни в отношении аминокислотной последовательности, а многочисленные опыты по мутагенезу показали, что они могут претерпевать значительные структурные изменения. Данные о том, что сигнальные пептиды содержат всю информацию, необходимую для транспорта белков через мембраны эндоплазматического ретикулу-ма или внутрь их, были получены в опытах с химерными полипептидами. Присоединение N-концевой сигнальной последовательности к обычным цитоплазматическим белкам, например к глобину, приводило к тому, что они транспортировались в полость эндоплазматического ретикулума.
С точки зрения «сравнительной анатомии» N-концевых сигнальных последовательностей можно выделить три разных в структурном отношении участка: 1) положительно заряженный N-концевой участок; 2) центральное гидрофобное ядро из 7—15 остатков; 3) С-концевой участок, который является полярным и содержит сайт, узнаваемый сигнальной пепти-дазой, которая находится на стороне эндоплазматического ретикулума, обращенной в полость. Показано, что многочисленные случайные последовательности способны выполнять функцию нормального сигнального пептида у инвертазы дрожжей и детерминировать ее секрецию. Анализ этих случайных последовательностей показал, что решающим фактором является их гидрофобность. На рис. 10.10 приведены данные о гидрофобности и длине гидрофобных участков известных сигнальных пептидов эукариот и большинства гидрофобных участков, обнаруженных в цитозольных белках эукариот, а также известных трансмембранных якорных участков мембранных белков. Из этих данных видно, что h-область обладает свойствами, промежуточными между свойствами соответствующих участков цитозольных белков, с одной стороны, и типичных трансмембранных сегментов — с другой.
Очевидно, структурная специфичность для процесса узнавания не играет существенной роли. Однако необходимо помнить, что изменение свободной энергии менее чем на 5 ккал/моль соответствует изменению сродства в 1000 раз. Такое различие в сродстве вполне может быть обусловлено тонкими различиями между функциональными и нефункциональными сигнальными последовательностями. Моделью рецептора сигнального пептида может служить растворимый фрагмент антигена гист©совместимости класса I, а именно HLA-A2, трехмерная структура которого известна. Этот белок связывается с пептидами — компонентами чужеродных антигенов, что является