Смекни!
smekni.com

Концепции современного естествознания Гусейханов Раджабов (стр. 54 из 104)

Все эти многочисленные факты и нашли свое обобщение и теоретическое объяснение в законах классической термодинамики:

1. Если к системе подводить тепло Q и над ней производить работу А, то энергия системы возрастает до величины U: U = = Q + А. Эту энергию U называют внутренней энергией системы.

2. Невозможно осуществить процесс, единственным результатом которого было бы превращение тепла в работу при

275


J


постоянной температуре, т. е. тепло не может перетечь самопроизвольно от холодного тела к горячему.

В первом законе речь идет о сохранении энергии, во-втором— о невозможности производства работы исключительно за счет изъятия тепла из одного резервуара при постоянной температуре, т. е. о направлении тепловых процессов в природе.

В 1865 г. немецкий физик Рудольф Клаузиус для формулировки второго закона термодинамики ввел новое понятие — "энтропия" (от греч. entropia — поворот, превращение). Клаузиус рассчитал, что существует некоторая величина S, которая подобно энергии, давлению, температуре характеризует состояние газа. Когда к газу подводится некоторое количество теплоты, AQ, то энтропия S возрастает на величину, равную AS = AQ/T.

В течение длительного времени ученые не делали различий между теплотой и температурой. Однако ряд явлений указывал на то, что эти понятия следует различать. Например, при плавлении кристаллического тела теплота расходуется, а температура тела не изменяется в процессе плавления. После введения Клаузиусом понятия энтропии стало понятно, где пролегает граница четкого различия таких понятий, как теплота и температура. Дело в том, что нельзя говорить о каком-то количестве теплоты, заключенном в теле. Это понятие не имеет смысла. Теплота может передаваться от тела к телу, переходить в работу, возникать при трении, но при этом она не является сохраняющейся величиной. Поэтому теплота определяется в физике не как вид энергии, а как мера изменения энергии. В то же время введенная Клаузиусом энтропия, как и температура, оказалась величиной, сохраняющейся в обратимых процессах; это означает, что энтропия системы может рассматриваться как функция состояния системы, ибо изменение ее не зависит от вида процесса, а определяется только начальным и конечным состоянием системы.

Было также показано, что изменение энтропии в случае обратимых процессов не происходит, т. е. AS = 0. Значит, энтропия изолированной системы в случае обратимых процессов посто-

276


янна. При необратимых процессах получаем закон возрастания энтропии:

S > 0.

Для описания термодинамических процессов первого закона термодинамики оказывается недостаточно, ибо первое начало термодинамики не позволяет определить направление протекания процессов в природе. Тот факт, что энтропия изолированной системы не может убывать, а только возрастает и достигает максимального значения в равновесном состоянии, является отражением того, что в природе возможны процессы, протекающие только в одном направлении — в направлении передачи тепла от более горячих тел менее горячим.

Физический смысл энтропии и само понятие энтропии введено в физическую теорию, чтобы отличать в случае изолированных систем обратимые процессы, при которых энтропия максимальна и постоянна от необратимых процессов, когда энтропия возрастает.

Благодаря работам австрийского физика Людвига Больцма-на, это отличие было сведено с макроскопического уровня на микроскопический. Состояние макроскопического тела (системы), заданное с помощью макропараметров (параметров, которые могут быть измерены макроприборами, — давление, температура, объем и другие макроскопические величины, характеризующие систему в целом), называют макросостоянием. Состояние макроскопического тела, охарактеризованное настолько подробно, что оказываются заданными состояния всех образующих тело молекул, называется микросостоянием. Всякое макросостояние может быть осуществлено различными способами, каждому из которых соответствует некоторое микросостояние системы. Число возможных различных микросостояний, соответствующих данному макросостоянию, называют термодинамической вероятностью W макросостояния.

Больцман первым увидел связь между энтропией и вероятностью и связал их. В 1906 году Макс Планк вывел формулу, выражающую основную мысль Больцмана об интерпретации энтропии как логарифма вероятности состояния системы: S = k In W. Коэффициент пропорциональности к рассчитан Планком и на-

277


зван им постоянной Больцмана. Формула: "S = к ln W" выгравирована на памятнике Больцману на кладбище в Вене.

Таким образом, энтропия изолированной системы при протекании необратимых процессов возрастает, ибо система, предоставленная самой себе, переходит из менее вероятного состояния в более вероятное. Энтропия системы, находящейся в равновесном состоянии, максимальная и постоянная (

S = 0).

Идея Больцмана о вероятностном поведении отдельных молекул явилась развитием нового подхода при описании систем, состоящих из огромного числа частиц, впервые высказанного Д. Максвеллом. Он ввел для описания случайного характера поведения молекул понятие вероятности, вероятностный (статистический) закон. В дальнейшем Больцман также показал, что второй закон термодинамики также является следствием более глубоких статистических законов поведения большой совокупности частиц. Он же интерпретировал понятие энтропии в терминах изменения порядка в системе. Когда энтропия системы возрастает, то соответственно усиливается беспорядок в системе, т. е. энтропия выражает меру беспорядка системы. В таком случае второй закон термодинамики постулирует: энтропия замкнутой системы, т. е. системы, которая не обменивается с окружением ни энергией, ни веществом, постоянно возрастает. А это означает, что такие системы эволюционируют в сторону увеличения в них беспорядка, хаоса и дезорганизации, пока не достигнут точки термодинамического равновесия, в которой всякое производство работы становится невозможным.

Поскольку об изменении системы в классической термодинамике мы можем судить по увеличению их энтропии, то последняя и выступает в качестве своеобразной стрелы времени. Термодинамика впервые ввела в физику понятие времени в весьма своеобразной форме, а именно необратимого процесса возрастания энтропии в системе. Чем выше энтропия системы, тем больший временной промежуток прошла система в своей эволюции. Такое понятие о времени и особенно об эволюции системы в термодинамике коренным образом отличается от понятия времени и эволюции, которое лежало в основе эволюционной те-

278


ории Дарвина. В то время как в дарвиновской теории происхождения новых видов растений и животных путем естественного отбора эволюция направлена на выживание более совершенных организмов и усложнение их организации, в термодинамике эволюция связывалась с дезорганизацией систем. В таком случае становилось непонятным, каким образом из неживой природы, системы которой имеют тенденцию к дезорганизации, могла появиться когда-либо живая природа, где системы, напротив, стремятся к совершенствованию и усложнению своей организации. Все это показало, что результаты исследования классической термодинамики находились в явном противоречии с тем, что было хорошо известно из других направлений науки. Это противоречие оставалось неразрешенным вплоть до 60-х годов XX в., пока не появилась новая, неравновесная термодинамика, которая опирается на концепцию необратимых процессов, рассматриваемых нами в 20-й главе.

11.3. Проблема "тепловой смерти Вселенной"

Ограничение области знания лишь небольшой группой людей ослабляет философский дух народа и ведет к духовному обнищанию.

А. Эйнштейн

Классическая термодинамика оказалась не способной решить и космологические проблемы характера протекания процессов, происходящих во Вселенной. Уильям Томпсон экстраполировал принцип возрастания энтропии на крупномасштабные процессы, протекающие в природе. На основе этого Р. Клаузиус распространил этот принцип на Вселенную в целом, что привело его к гипотезе о "тепловой смерти Вселенной". Все физические процессы, согласно второму началу термодинамики, протекают в направлении передачи тепла от более горячих тел к менее горячим. Это означает, что медленно, но верно идет процесс выравнивания температуры во Вселенной. Следовательно, будущее вырисовывается перед нами в достаточно трагических тонах:

279


ожидается исчезновение температурных различий в природе и превращение всей мировой энергии в теплоту, равномерно распределенную во Вселенной. Отсюда Клаузиус выдвинул два постулата:

1. Энергия Вселенной всегда постоянна.

2. Энтропия Вселенной всегда растет к максимуму.

Если принять второй постулат, то необходимо признать, что процессы во Вселенной направлены в сторону достижения состояния термодинамического равновесия, соответствующего максимуму энтропии, а следовательно, состояния, характеризуемого наибольшей степенью хаоса, беспорядка и дезорганизации. В таком случае во Вселенной наступит тепловая смерть и никакой полезной работы в ней произвести будет нельзя.