Смекни!
smekni.com

Концепции современного естествознания Гусейханов Раджабов (стр. 38 из 104)

Симметрия относительно перехода к движущейся системе отсчета, т. е. по отношению к преобразованиям Галилея, в нерелятивистском случае приводит к закону сохранения инерции. Он выполняется только для изолированных систем. Закон сохранения импульса недостаточен для обоснования закона сохранения центра инерции. Необходимо знать связь между импульсом и скоростью. Эта связь устанавливается с использованием фундаментальной симметрии относительно переходов от состояния покоя к равномерному прямолинейному движению. Выполнение всех этих законов сохранения в изолированной системе означает эквивалентность всех инерциальных систем, провозглашаемую принципом относительности.

Трехмерность пространства предопределяет векторную природу импульса и момента импульса; закон сохранения этих величин — векторные законы. Одномерность времени предопределяет скалярную природу энергии и соответствующего закона сохранения.

Тот факт, что закон сохранения энергии вытекает из однородности времени, означает, что течение времени само по себе не может вызвать изменение физических состояний системы. Связь закона сохранения импульса со свойством однородности пространства означает, что перемещение системы недостаточно для изменения ее состояния; последнее может произойти только в результате взаимодействия данной системы с другими системами. Связь закона сохранения момента импульса со свойством изотропности пространства означает, что поворот системы в пространстве не изменяет ее свойств.

193


В классической механике законы сохранения выводят из законов движения. Так, для получения закона сохранения импульса используют второй и третий законы Ньютона. Однако законы сохранения могут быть получены не на основе законов движения, а непосредственно из принципов симметрии. Область применимости законов сохранения шире, нежели область применимости тех или иных законов движения. Законы сохранения энергии, импульса, момента импульса применяются не только в классической механике, но и в квантовой; в то время как законы динамики Ньютона в квантовой механике не работают. Для тех, кто выводит законы сохранения из принципов инвариантности, ясно, что область применения этих законов выходит за рамки любых частных теорий (гравитации, электромагнетизма и т. д.), практически обособленных друг от друга в современной физике. Очевидно, что область применения законов сохранения должна быть столь же широка, как и область применения соответствующих принципов инвариантности. Это дает основание считать законы сохранения универсальными законами.

5. Симметрия относительно зеркального отражения означает, что физические законы не меняются при замене левого на правое, а правого на левое. С симметрией законов природы относительности отражения или частиц и античастиц связаны определенные законы сохранения. С первой симметрией связано сохранение физической величины, называемой пространственной четностью, а со второй — сохранение величины, называемой зарядовой четностью. Оба этих закона сохранения не вполне универсальны, поскольку соответствующие им симметрии нарушаются в слабых взаимодействиях.

Законы сохранения занимают в естествознании особое место. Существует следующая точка зрения на эти законы: они представляют собой наиболее глубокие, фундаментальные законы природы, к которым, возможно, сведутся в будущем все закономерности естествознания. В нашем знании о мире есть три последовательные ступени. На низшей ступени находятся явления, на следующей — законы природы, на третьей — принципы симметрии. Законы природы позволяют предсказать

194


явления, принципы симметрии позволяют предсказать законы природы. Прогресс в научном познании мира основывается, в конечном счете, на познании принципов симметрии. Но при этом необходимо иметь в виду не просто симметрию, а симметрию в диалектической взаимосвязи с асимметрией.

ВЫВОДЫ

1. Все то, из чего состоит окружающая нас известная сейчас и познаваемая нами часть Вселенной, называют материей. Философское определение материи — это объективная реальность вне и независимо от человеческого сознания и отражаемая им. Материя существует в различных формах (например, вещество, поле).

2. Вещества Вселенной при различных температурах и давлениях могут находиться в четырех агрегатных состояниях: твердом, жидком, газообразном и плазменном.

3. Мерой различных форм движения материи является энергия. Она бывает в различных видах: механическая, тепловая, внутренняя, химическая, электрическая, магнитная, солнечная, атомная, ядерная, термоядерная и др.

4. Фундаментальными законами природы являются законы сохранения. Существуют законы сохранения различных величин: массы, энергии, количества движения, момента количества движения, заряда и др.

5. В природе существуют принципы симметрии объектов и физических законов. Различным симметриям физических законов в природе соответствуют определенные законы сохранения. Закон сохранения энергии есть следствие однородности времени. Закон сохранения импульса есть следствие однородности пространства. Закон сохранения момента импульса есть следствие изотропности пространства.

Вопросы для контроля знаний

1. В чем качественная особенность философского определения материи от естественно-научного его понимания?

2. Какими всеобщими свойствами обладает материя?

3. Какие основные формы и виды, материи вы знаете?

195


4. В чем смысл теоремы Э. Нетер?

5. Какие виды энергии вам известны?

6. Чем обусловливается важность развития энергетики?

7. Дайте краткую характеристику традиционным источникам энергии.

8. Каковы перспективы развития атомной энергетики?

9. Какими факторами обусловливается относительно медленное развитие гелиоэнергетики?

10. Каковы перспективы широкого использования источников
энергии ветра, Мирового океана и геотермальных источников?

196


Глава 9. СОСТАВ, СТРУКТУРА И ВЗАИМОПРЕВРАЩЕНИЯ ВЕЩЕСТВ

Истинный химик должен уметь доказывать познанное... то есть давать ему объяснение...

М. В. Ломоносов

9.1. Концептуальные уровни в познании веществ

Закономерности, происходящие в веществах, процессы их превращения, при которых происходит изменение их состава и структуры, изучает раздел естествознания — химия. Она занимается явлениями природы, сопровождающими химические изменения вещества, изучает причины и законы управления химическими процессами, а также рассматривает составные части вещества и их применение на практике. Отдельные химические процессы (получение металлов из руд, крашение тканей и др.) использовались еще на заре становления человеческой цивилизации. Позже, в III—IV вв., зародилась алхимия, задачей которой было превращение неблагородных металлов в благородные (золото, серебро). Начиная с эпохи Возрождения химические исследования все в большей мере стали использовать для практических целей (металлургия, стеклоделие, керамика, получение красок и т. д.).

Химию можно определить как науку, изучающую вещества и процессы их превращения, сопровождающиеся изменением состава и структуры. Химический процесс сопровождается изменением состава веществ, их структуры и обязательно энергетическими изменениями в реагирующей системе. Вследствие взаимосвязанности форм движения материи и их взаимопре-

197


вращаемости в результате химических реакций имеет место превращение химической энергии в теплоту, свет и проч. Химия нужна человечеству для того, чтобы из вещества природы получать по возможности все необходимое — металлы, цемент, бетон, керамику, фарфор, стекло, каучук, пластмассы, искусственные волокна, лекарства и многое другое.

Основой химической науки является атомно-молекулярное учение (АМУ), закон сохранения материи, периодический закон и теория строения вещества, учение о химическом процессе (кинетика). Химические процессы подчиняются всеобщим законам природы — закону сохранения массы вещества и закону сохранения энергии. Закон сохранения массы вещества открыли М. В. Ломоносов и А. Л. Лавуазье почти независимо друг от друга. Они далеко продвинули развитие химии тем, что при химических реакциях применили физические методы, в частности взвешивание. Закон сохранения массы в химических процессах можно сформулировать так: сумма масс исходных веществ (соединений) равна сумме масс продуктов химической реакции. Например, при разложении воды масса воды будет равна сумме массы водорода и массы кислорода. Из закона сохранения вещества вытекает, что вещество нельзя ни создать из ничего, ни уничтожить совсем. Количественным выражением закона сохранения массы веществ применительно к производственному химическому процессу является материальный баланс, в котором подтверждается, что масса веществ, поступивших на технологическую операцию, равна массе полученных веществ. Закон сохранения энергии действует во всех случаях и повсюду, где одна форма энергии переходит в другую.

Несмотря на обилие эмпирического материала о свойствах различных веществ и их соединений, особенностях протекания разнообразных реакций, в химии, до открытия в 1869 г. периодической системы химических элементов Д. И. Менделеева не существовало той объединяющей концепции, с помощью которой можно было бы объяснить весь накопленный фактический материал. Было бы, однако, неправильно не учитывать той громадной исследовательской работы, которая привела к утверждению сис-