Смекни!
smekni.com

Концепции современного естествознания Гусейханов Раджабов (стр. 11 из 104)

Открытие Эрстедом в 1820 г. магнитного действия тока показало, что между магнитными и электрическими явлениями существует связь и что магнитные действия можно получить при помощи электрических токов. Магнитное действие токов было детально изучено Ампером, который пришел к заключению, что все магнитные явления в природе, в том числе и связанные с постоянными магнитами, вызваны электрическими токами (теория молекулярных токов Ампера).

Дальнейшими результатами того периода мы обязаны М. Фарадею. Из них особое значение имело открытие электромагнитной индукции. Фарадей исходил из основной идеи о взаимной связи явлений природы. Он считал, что если ток способен вызывать магнитные явления, то и обратно, при помощи магнитов или других токов, можно получить электрические токи. В результате настойчивости и многих попыток Фарадей действительно открыл в 1831 г. это явление, которое еще более укрепило представление о связи между электричеством и магнетизмом.

Второй важнейшей идеей в работах Фарадея было признание основной, определяющей роли промежуточной среды в электрических явлениях. Фарадей не допускал действия на расстоянии, которое, как мы сейчас хорошо знаем, физически бессодержательно, и считал, что электрические магнитные взаимодействия передаются промежуточной средой и что именно в этой среде разыгрываются основные электрические и магнитные процессы.

57


В работах Максвелла идеи Фарадея подверглись дальнейшему углублению и развитию и были превращены в строгую математическую теорию. В теории Максвелла мысль о тесной связи электрических и магнитных явлений получила окончательное оформление в виде двух основных положений теории. Поэтому теория Максвелла явилась завершением важного этапа в развитии учения об электричестве и привела к классическому представлению об электрическом поле, содержащем в общем случае и электрическое, и магнитное поля, связанные между собой и способные взаимно превращаться друг в друга.

Уравнения Максвелла содержат в себе все основные законы электрического и магнитного полей, включая электромагнитную индукцию, и поэтому являются общими уравнениями электромагнитного поля в покоящихся средах.

Теория Максвелла не только объяснила уже известные факты, но и предсказала новые и важные явления. Совершенно новым в этой теории явилось предположение Максвелла о магнитном поле токов смещения. На основе этого предположения Максвелл теоретически предсказал существование электромагнитных волн, т. е. переменного электромагнитного поля, распространяющегося в пространстве с конечной скоростью. Теоретическое исследование свойств электромагнитных волн привело затем Максвелла к созданию электромагнитной теории света, согласно которой свет представляет собой также электромагнитные волны. В дальнейшем электромагнитные волны действительно были получены на опыте, а еще позднее электромагнитная теория света, а с нею и вся теория Максвелла получили полное и блестящее подтверждение.

Если в XVIII в. стремились свести все к механике, то теперь все, включая и ряд механических явлений (например, трение, упругость), стремятся свести к электромагнетизму. Вне сферы электромагнетизма остается только тяготение. В качестве элементарных структур, из которых построена вся материя, рассматриваются всего три частицы — электрон, протон и фотон. Фотоны — кванты электромагнитного поля. При рассмотрении электромагнитного поля наряду с волновыми используются так-

58


же корпускулярные (фотонные) представления, утвердившиеся в естествознании как корпускулярно-волновой дуализм.

Электромагнитная картина мира формировалась не только в XIX в., она продолжала формироваться в течение трех десятилетий XX в. Она использовала не только учение об электромагнетизме и достижения атомистики, но также некоторые идеи современной физики. Исследуя проблемы теплового изучения и фотоэффекта, Альберт Эйнштейн в самом начале XX столетия пришел к выводу о квантовании энергии светового излучения, а в 1916 г. он ввел в рассмотрение понятие порции самого излучения (световые кванты), обладающие не только определенной энергией, но и определенным импульсом. С 1926 г. световые кванты стали называться фотонами. Таким образом, стали известны два типа полей — электромагнитное и гравитационное. Соответственно есть два фундаментальных взаимодействия.

Конечно, электромагнитная картина мира по сравнению с механистической картиной мира представляла собой значительный шаг вперед в познании окружающего мира. Многие детали электромагнитной картины мира сохранились в современной естественно-научной картине мира: понятие физического поля, электромагнитная природа сил, ядерная модель атома, дуализм корпускулярных и волновых свойств и многое другое. В то же время в электромагнитной картине мира, как и в механистической, господствовали однозначные причинно-следственные связи, по-прежнему все было жестко определено, характерна метафизическая омертвелость, внутренние противоречия отсутствовали. Открытые Максвеллом и Больцманом вероятностные закономерности не признавались фундаментальными, и они не включались ни в механистическую, ни в электромагнитную картину мира. Столь же однозначными, жесткими представлялись и максвелловские законы, управляющие электромагнитным полем.

Девятнадцатый век подвел к пониманию диалектики природы, но сам век еще оставался на позициях метафизического материализма. Нужен был диалектический материализм.

59


Т


3.4. Современная естественно-научная картина мира

Кто в состоянии найти в своем сердце столь мощную силу, чтобы достойно воспеть все величие наших открытий?

Тит Лукреций Кар

Современная естественно-научная картина мира является результатом синтеза систем мира древности, античности, гео-и гелиоцентризма, механистической, электромагнитной картин мира и опирается на научные достижения современного естествознания (табл. 3.1).

В конце XIX—начале XX в. в естествознании были сделаны крупнейшие открытия, которые коренным образом изменили наши представления о картине мира. Прежде всего это открытия, связанные со строением вещества, и открытие взаимосвязи вещества и энергии.

Современное естествознание представляет окружающий материальный мир нашей Вселенной однородным, изотропным и расширяющимся. Материя в мире находится в форме вещества и поля. По структурному распределению вещества окружающий мир разделяется три большие области: микромир, макромир и мегамир. Между структурами существуют четыре фундаментальных вида взаимодействий: сильное, электромагнитное, слабое и гравитационное, которые передаются посредством соответствующих полей. Существуют кванты всех фундаментальных взаимодействий.

Если раньше последними неделимыми частицами материи, своеобразными кирпичиками, из которых состоит природа, считали атомы, то в конце прошлого века были открыты электроны, входящие в состав атомов. Позднее было установлено строение ядер атомов, состоящих из протонов (положительно заряженных частиц) и нейтронов.

Согласно первой модели атома, построенной английским ученым Эрнестом Резерфордом, атом уподоблялся миниатюр-

60


Таблица 3.1

Основные этапы становления современной естественно-научной картины мира

Этап истории Научная картина мира
4000 лет до н. э. 3000 лет до н. э Научные догадки египетских жрецов, составление солнечного календаря Предсказание солнечных и лунных затмений китайскими мыслителями
2000 лет до н. э. Разработка семидневной недели и лунного календаря в Вавилоне
VIII в до н. э. Первые представления о единой естественно-научной картине мира в античный период. Возникновения представлений о материальной первооснове всех вещей
VII в. до н. э. Создание математической программы Пифагора-Платона
VI в. до н. э. Атомистическая физическая программа Демокрита-Эпикура
V в. до н. э. Континуа листическая физическая программа Анаксагора-Аристотеля
II в. н. э. Изложение геоцентрической системы мира К. Птолемеем в сочинении "Альмагест"
1543 г. Гелиоцентрическая система строения мира польского мыслителя Н. Коперника
XVII в. Становление механистической картины мира на основе законов механики И. Кеплера и И. Ньютона
XIX в. Возникновение электромагнитной картины мира на основе трудов М. Фарадея и Д. Максвелла
XX в. Становление современной естественно-научной картины мира

61


ной Солнечной системе, в которой вокруг ядра обращаются электроны. Энергия излучается и поглощается атомом в виде квантов или порции энергии только при переходе электрона с одной орбиты на другую.

В 30-е годы XX в. было сделано другое важнейшее открытие, которое показало, что элементарные частицы вещества, например электроны, обладают не только корпускулярными, но и волновыми свойствами. Это явление получило название дуализма волны и частицы — представление, которое никак не укладывалось в рамки обычного здравого смысла. До этого физики придерживались убеждения, что вещество, состоящее из разнообразных материальных частиц, может обладать лишь корпускулярными свойствами, а энергия поля — волновыми свойствами. Соединение в одном объекте корпускулярных и волновых свойств совершенно исключалось. В 1925-1927 гг. для объяснения процессов, происходящих в мире мельчайших частиц материи — микромире, была создана новая волновая, или квантовая, механика. Впоследствии возникли и разнообразные другие квантовые теории: квантовая электродинамика, теория элементарных частиц и другие, которые исследуют закономерности движения микромира.