Но других понятий у нас нет и быть не может. Поэтому, чтобы компенсировать неадекватность нашего восприятия и представлений об объектах микромира, нам приходится применять два дополняющих друг друга набора понятий, хотя с точки зрения классической науки они взаимно исключают друг друга, — это понятия частицы и волны. Только в совокупности они дают исчерпывающую информацию о квантовых явлениях.
Частным выражением принципа дополнительности является соотношение неопределенностей, сформулированное В. Гейзенбергом в 1927 г. Этот принцип наглядно иллюстрирует отличие квантовой теории от классической механики.
Если в классической механике мы допускаем, что можно абсолютно точно знать координаты, импульс и энергию частицы в любой момент времени, то в квантовой механике это невозможно. В соответствии с принципом неопределенности, чем точнее фиксирован импульс, тем большая неопределенность будет содержаться в значении координаты, и наоборот. Также соотносятся энергия и время. Точность измерения энергии обратно пропорциональна длительности процесса измерения. Причина этого — во взаимодействии прибора с объектом измерения.
Принцип суперпозиции
Принцип суперпозиции (наложения) — это допущение, согласно которому результирующий эффект представляет собой сумму эффектов, вызываемых каждым воздействующим явлением в отдельности. Одним из простых примеров принципа суперпозиции является правило параллелограмма, в соответствии с которым складываются две силы, воздействующие на тело. Этот принцип выполняется при условии, когда воздействующие явления не влияют друг на друга. Поэтому в ньютоновской физике он неуниверсален и во многих случаях справедлив лишь приближенно.
В микромире, наоборот, принцип суперпозиции — фундаментальный принцип, который наряду с принципом неопределенности составляет основу математического аппарата квантовой механики. Но, к сожалению, в квантовой теории принцип суперпозиции лишен той наглядности, которая характерна для механики Ньютона. Его интерпретируют так: пока не проведено измерение, бессмысленно спрашивать, в каком состоянии находится физическая система. Иными словами, до измерения система находится в суперпозиции двух возможных состояний, т.е. ее состояние неопределенно. Акт измерения переводит физическую систему скачком в одно из возможных состояний.
Принцип соответствия
Принцип соответствия был сформулирован Н. Бором в 1923 г., когда физики столкнулись с ситуацией, что рядом со старыми, давно оправдавшими себя теориями (например, с механикой Ньютона), появились новые теории (теория относительности Эйнштейна), описывающие ту же область действительности. Принцип соответствия утверждает преемственность физических теорий, в частности, то, что никакая новая теория не может быть справедливой, если она не содержит в качестве предельного случая старую теорию, относящуюся к тем же явлениям, поскольку старая теория уже оправдала себя в своей области.
Поэтому теории, справедливость которых была экспериментально установлена для определенной группы явлений, с построением новой теории не отбрасываются, но сохраняют свое значение для прежней области явлений как предельное выражение законов новых теорий. Выводы новых теорий в области, где справедлива старая теория, переходят в выводы старых теорий.
Каждая физическая теория как ступень познания является относительной истиной. Смена физических теорий — это процесс приближения к абсолютной истине, процесс, который не будет никогда полностью завершен из-за бесконечной сложности и разнообразия окружающего нас мира. Таким образом, принцип соответствия отражает объективную ценность физических теорий.
Заключение
Цель физики заключается в отыскании общих законов природы и в объяснении конкретных процессов на их основе. По мере продвижения к этой цели перед учеными постепенно вырисовывалась величественная и сложная картина мира единства природы. Мир представляет собой не совокупность разрозненных, независимых друг от друга событий, а разнообразные и многочисленные проявления одного целого.
Многие поколения поражала и продолжает поражать величественная и цельная механическая картина мира, которая была создана на основе механики Ньютона.
Основанием для такой единой картины мира послужил всеобъемлющий характер открытых Ньютоном законов движения тел. Однако простая механическая картина мира оказалась не состоятельной. Выяснилось, что электромагнитные процессы не подчиняются законам механики Ньютона
После создания электродинамики представление о силах существенно изменились. Развитие электродинамики привело к попыткам построить единую электромагнитную картину мира. Все события в мире, согласно этой картине, управляются законами электромагнитных взаимодействий. Однако свести все процессы в природе к электромагнитным не удалось.
По современным данным в природе имеются четыре типа сил: гравитационные, электромагнитные, ядерные, и слабые взаимодействия. Про явления всех четырех типов сил, встречаются по всей вселенной появлением квантовой физики, произошло революционное изменение классических представлений о физической картине мира. Принципы квантовой теории являются совершенно общими, применимыми для описания движения всех частиц, взаимодействий между ними и их взаимно превращений
Не смотря на это, что все отчетливее видна связь между различными типами взаимодействий, саму физическую суть единства мира уловить пока еще не удалось. Человечеству еще придётся много поработать, чтобы проникнуть в тайны мироздания
Список литературы
1. Ахиезер, A.M. Современная физическая картина мира / A.M. Ахиезер, М.П. Рекало. — М.: Мир, 1980.
2. Гейзенберг, В. Физика и философия / В. Гейзенберг. — М.: Мысль, 1989.
3. Гудков, Н.А. Идея "великого синтеза" в физике / Н.А. Гудков. — Киев: Наук. думка, 1990.
4. Зелиг, К.А. А. Эйнштейн / К.А. Зелиг. — М.: Атомиздат, 1964.
5. Пахомов, К.Я. Становление физической картины мира / К.Я. Пахомов. — М.: Знание, 1985.
6. Садохин А. П. Концепции современного естествознания / А.П. Садохин. — М.: ЮНИТИ-ДАНА, 2006. - 447 с.