Смекни!
smekni.com

Концепции современного естествознания 14 (стр. 51 из 57)

Итак, при изменении управляющих параметров в системе наблюдаются различные переходные явления, которые мы рассмотрим с помощью т.н. диаграммы бифуркации (см. рис. 2).

1 – асимптотическая ветвь, где система остается устойчивой, т.е. при малых l имеет одно единственное решение
2 – точка, где l=lС - здесь происходит потеря устойчивости. Появляется два решения.
3 – система вновь находится в равновесии, причем существуют 2 устойчивые ветви b1 и b2.

Сама точка lС носит название точки бифуркации (<лат. раздвоение, размножение) или «точкой катастрофы».

Ранее уже использовалось понятие флуктуации, т.е. отклонение какой-либо величины от среднего значения. Здесь, как видим, малая флуктуация управляющего параметра может иметь определяющее значение для системы (она начинает развиваться либо по ветви b1, либо по ветви b2). В биологической эволюции флуктуации проявляются в мутациях, изменчивости, в то время как устойчивость обусловлена естественным отбором.

Усложнение структуры и поведения системы тесно связано с появлением новых путей решения в результате бифуркаций. В сильно неравновесных условиях процессы самоорганизации соответствуют «тонкому взаимодействию» между случайностью и необходимостью, флуктуациями и детерминистскими законами. Вблизи бифуркаций, т.е. резких, «взрывных» изменений системы, основную роль играют флуктуации или случайные элементы, тогда как в интервалах между бифуркациями преобладает детерминизм. Ситуацию, возникающую после воздействия флуктуации на систему и возникновения новой структуры, И. Пригожин назвал порядком через флуктуацию или «порядком из хаоса». Флуктуации могут усиливаться в процессе эволюции системы или затухать, что зависит от эффективности «канала связи» между системой и внешним миром.

Аттракторы и фазовые траектории. Для выяснения сущности этих понятий рассмотрим динамическую систему. Понятие динамической системы состоит из двух частей: понятия состояния (существенной информации о системе) и динамики (правила, описывающего эволюцию системы во времени). Эволюцию можно наблюдать в пространстве состояний, или фазовом пространстве, - абстрактном пространстве, в котором координатами служат компоненты состояния. При этом координаты выбираются в зависимости от контекста. В случае механической системы это могут быть положение и скорость, в случае экологической модели - популяции различных биологических видов.

Пусть интересующий нас процесс зависит только от одной переменной (например, от времени t ) и может быть смоделирован с помощью системы дифференциальных уравнений вида

, (2.1)

где

- N- мерный вектор, характеризующий состояние системы,
- начальные данные. К числу математических моделей такого рода относятся, например, уравнения механики для системы материальных точек (движение планет Солнечной системы, груза на наклонной плоскости, элементарной частицы в электромагнитном поле и др.). Число явлений окружающего мира, которое может быть описано с помощью подобных моделей огромно, однако число моделей, которые могут быть изучены путем вычислительного эксперимента на компьютерах весьма ограничено, а уравнения, которые могут быть решены аналитически, составляют чрезвычайно малую долю.

Рассмотрим наиболее простой пример динамической системы - простой маятник. Его движение задается всего двумя переменными: положением и скоростью. Таким образом, его состояние - это точка на плоскости, координаты которой - положение маятника и его скорость. Это означает, что размерность вектора, характеризующего состояние маятника N = 2. Эволюция состояния описывается правилом, которое выводится из законов Ньютона и выражается математически в виде дифференциального уравнения. Когда маятник качается взад-вперед, его состояние - точка на плоскости - движется по некоторой траектории («орбите»). В идеальном случае маятника без трения орбита представляет собой петлю; при наличии трения орбита закручивается по спирали к некоторой точке, соответствующей остановке маятника (см. рис. 3). Часы с маятником, которые заводятся при помощи пружины или гирь, также проходят циклически некоторую последовательность состояний. Маятник снова и снова повторяет свой путь. В фазовом пространстве его движению соответствует периодическая траектория, или цикл. Неважно, как маятник запущен в движение - в конце концов, он придет к тому же циклу. Такие аттракторы называются предельными циклами. Другим примером системы с предельным циклом является сердце.

Точка или множество точек (например, петля, цикл), к которому стремится прийти система, называется аттрактором (от лат. attractio – притягиваю). Другими словами, аттрактор – это точка или некоторое множество точек, к которому стремится динамическая система с течением времени, как бы «забывая» начальные условия. Действительно, каковы бы не были начальные значения переменных системы, по мере развития динамического процесса, они будут стремиться к одним и тем же значениям или одним и тем же множествам значений – аттракторам. Таким образом, аттракторы - это геометрические структуры, характеризующие поведение в фазовом пространстве по прошествии длительного времени.

Одна и та же система может иметь несколько аттракторов. Если это так, то разные начальные условия могут привести к разным аттракторам. Множество точек, приводящих к некоторому аттрактору, называется его областью притяжения. Система с маятником имеет две такие области: при небольшом смещении маятника от точки покоя он возвращается в эту точку, однако при большом отклонении часы начинают тикать, и маятник совершает стабильные колебания.

Свойства аттракторов задаются набором траекторий в пространстве n переменных состояния, которые зависят от времени как от параметра. В обычном аттракторе эти траектории простые (точка, окружность, эллипс и т.п.). Но ряд явлений сопровождается появлением траекторий запутанных, не похожих ни на точки, ни на кривые, ни на поверхности, имеют вид «спутанных клубков», многослойных поверхностей. Такие аттракторы получили названия «странных аттракторов». Странность состоит в том, что, попав в область странного аттрактора, точка, соответствующая состоянию системы будет «блуждать» там и только через большой промежуток времени приблизится к какой-либо точке аттрактора. Поведение системы выглядит при этом хаотическим, а ее дальнейшее поведение сильно зависит от начальных условий.

Контрольные вопросы

1. Что является областью исследования синергетики?
2. Назовите имена ученых, внесших вклад в развитие синергетики.
3. Какие системы называются диссипативными?
4. Поясните смысл бифуркации.
5. Что такое параметры порядка?
6. Что такое фазовое пространство, фазовая траектория?
7. Что такое аттрактор, странный аттрактор.

Литература

1. Дягилев Ф.М. Концепции современного естествознания. - М.: Изд. ИЭМПЭ, 1998.
2. Дубнищева Т.Я. Концепции современного естествознания. – Новосибирск: ЮКЭА, 1997.
3. Грядовой Д.И. Концепции современного естествознания. Структурный курс основ естествознания. – М.: Учпедгиз, 1999.
4. Концепции современного естествознания./ под ред. проф. С.А. Самыгина, 2-е изд. – Ростов н/Д: «Феникс», 1999.

Лекция 25. Эволюционно-синергетическая парадигма (продолжение)

1. Примеры самоорганизации в неживой природе 2. Самоорганизация в социальных системах Синергетика и экономика
Эволюция в социальных и гуманитарных системах
Синергетические координаты для описания эволюции
Контрольные вопросы
Литература

1. Примеры самоорганизации в неживой природе

Ячейки Х.Бенара. Классическим примером возникновения структуры является конвективная ячейка Бенара. Если в сковородку с гладким дном налить минеральное масло, подмешать для наглядности мелкие алюминиевые опилки и начать нагревать, мы получим довольно наглядную модель самоорганизующейся открытой системы. При небольшом перепаде температур передача тепла от нижнего слоя масла к верхнему идет только за счет теплопроводности, и масло является типичной открытой хаотической системой. Но при некотором критическом перепаде температур между нижним и верхним слоями масла в нем возникают упорядоченные структуры в виде шестигранных призм (конвективных ячеек), как это показано на рис.1. В центре ячейки масло поднимается вверх, а по краям опускается вниз. В верхнем слое шестигранной призмы оно движется от центра призмы к ее краям, в нижнем – от краев к центру. Важно отметить, что для устойчивости потоков жидкости необходима регулировка подогрева, и она происходит самосогласованно. Возникает структура, поддерживающая максимальную скорость тепловых потоков. Поскольку система обменивается с окружающей средой только теплом и в стационарном состоянии (при Т­1) получает тепла столько, сколько отдает (при Т2 < Т1), то

S = (Q/T1) – (Q/T2) < 0,

т.е. внутренняя структура (или самоорганизация) поддерживается за счет поглощения отрицательной энтропии, или негэнтропии из окружающей среды. Подобные конвективные ячейки образуются в атмосфере, если отсутствует горизонтальный перепад давления.

Работа лазера. Рабочей средой твердотельного лазера является рубиновый стержень, на концах которого устанавливаются два качественных зеркала (резонатор). С помощью мощной лампы накачки атомы рубина приходят в возбужденное состояние и начинают излучать. Вначале их излучение является хаотическим, независимым друг от друга, и лазер работает как обычная лампа. Но при определенном (критическом) значении мощности накачки происходит скачкообразный переход работы лазера от хаотического излучения к самосогласованному. Коллективное излучение атомов становится когерентным, т.е. упорядоченным.