Смекни!
smekni.com

Концепции современного естествознания 14 (стр. 50 из 57)

Возникновение синергетики связано, в основном, с именами И. Пригожина - бельгийского физика и химика И.Пригожина, лауреата Нобелевской премии 1977 г., немецкого физика Г.Хакена, другого немецкого ученого М. Эйгена (вспомним его гиперциклы), а также наших отечественных ученых Б. Белоусова и Жаботинского.

И.Пригожин, разрабатывая современную термодинамику необратимых процессов (неравновесную термодинамику) открыл явление образования упорядоченных структур из хаотического, неупорядоченного состояния системы, т.е. самоорганизацию и сформулировал теорему о минимуме производства энтропии в стационарном неравновесном состоянии. К своим идеям он пришел, анализируя специфические химические реакции, которые впервые экспериментально были изучены Б. Белоусовым и А. Жаботинским. И. Пригожин со своими сотрудниками И.Стенгерс, Г.Николисом построили математическую модель таких реакций, а также показали, что в сильно неравновесных условиях может совершаться переход от беспорядка, теплового хаоса к порядку, организованности.

Г. Хакен, изучая процессы самоорганизации, происходящие в лазере, назвал новое направление исследований синергетикой, что в переводе с греческого означает совместное действие, или взаимодействие, и хорошо передает смысл и цель нового подхода к изучению явлений.

М.Эйген доказал, что открытый Ч. Дарвином принцип отбора справедлив и на микроуровне, а генезиз (происхождение жизни есть результат процесса отбора, происходящего на молекулярном уровне. Он показал, что сложные органические структуры с адаптационными характеристиками возникают благодаря эволюционному процессу отбора на основе автокатализа.

2. Основные понятия и принципы синергетики

Порядок и хаос. В результате протекания процессов в изолированных системах сами системы переходят в состояние равновесия, которое соответствует максимальному беспорядку системы – равновесный тепловой хаос. Таким образом, самоорганизация, или эволюция в случае замкнутой системы приводит ее в состояние максимального беспорядка. В реальности, тем не менее, часто наблюдаются совершенно противоположные явления.

Уже теория Канта и Лапласа об образовании упорядоченной Солнечной системы из хаотических туманностей противоречила II началу термодинамики. Но особенно ярко проявилось противоречие II начала термодинамики с эволюционной теорией Дарвина. Ведь согласно ей, в мире живого естественно протекающие процессы ведут к усложнению форм и структур, к увеличению порядка, избавлению от хаоса и удалению от равновесия. Другими словами, самоорганизация в живой природе приводит систему к прямо противоположному состоянию, чем самоорганизация в неживых системах. Все это привело к появлению понятия открытой системы, которое и позволило устранить упомянутые противоречия.

Открытость систем. Такие понятия как изолированная (закрытая) система, необратимые процессы являются идеализацией. При изучении обратимых процессов (например, качание маятника в вакууме при отсутствии трения) нет смысла говорить о направлении течения времени, т.к. прошлое, настоящее и будущее в этом случае не отличаются. Поэтому в уравнениях обратимых процессов время выступает всего лишь как параметр, который можно изменять. Но в реальности в случае с маятником всегда присутствует трение, колебания маятника будут затухающими, и прошлое, настоящее и будущее будут уже отличаться. Ранее уже говорилось о том, что необратимых процессов в живой природе эволюционным принципом стало II начало термодинамики, утверждающее, что энтропия изолированной системы возрастает. Именно рост энтропии устанавливает направление протекания процесса, т.е. «стрелу времени».

В своей книге «Что такое жизнь» выдающийся австрийский физик Э. Шредингер указал на то, что средство, при помощи которого организм поддерживает себя на достаточно высоком уровне упорядоченности, т.е. на достаточно низком уровне энтропии, в действительности состоит в непрерывном извлечении упорядоченности из окружающей его среды. Другими словами, организм извлекает из окружающей среды негэнтропию. Открытая система заимствует энергию и вещество из окружающей его среды и одновременно выводит в окружающую среду отработанное вещество и отработанную энергию. Вырабатывая и заимствуя энергию, открытая система производит энтропию, но она не накапливается в ней, а выводится в окружающую среду. С поступлением энергии и вещества в открытую систему ее неравновесность возрастает, разрушаются прежние связи между элементами и возникают новые, которые приводят к новой структуре, новым кооперативным процессам, т.е. к коллективному поведению ее элементов.

Нелинейность. Сложные системы являются нелинейными. Для их описания используются нелинейные математические уравнения, т.е. уравнения, в которых искомые величины входят в степенях больше единицы, в составе математических функций (тригонометрических, логарифмических и т.п.) или коэффициенты зависят от свойств среды и особенностей протекания процесса. Нелинейные уравнения могут иметь несколько качественно различных решений. Физически это означает возможность различных путей эволюции системы.

Диссипативность. Великий русский математик А.М.Ляпунов разработал общую теорию устойчивости состояний систем. Очень кратко ее идею можно выразить следующим образом. Устойчивые состояния систем не теряют своей устойчивости при флуктуациях физических параметров, поскольку система за счет внутренних взаимодействий способна погасить возникающие флуктуации. Неустойчивые системы, наоборот, при возникновении флуктуаций способны усиливать их, и, в результате такого нарастания амплитуд возмущений система уходит из стационарного состояния. Критерием эволюции при этом является величина (dS/dt) < 0, которая указывает направление развития физической системы к устойчивому стационарному состоянию. Эти процессы происходят достаточно медленно, поэтому на каждом этапе как бы достигается равновесие. Величина прироста энтропии за единицу времени в единице объема называется функцией диссипации, а системы, в которых функция диссипации отлична от нуля, называются диссипативными. В таких системах энергия упорядоченного движения переходит в энергию неупорядоченного движения и, в конечном счете, в тепло. Практически все системы являются таковыми, поскольку трение и прочие силы сопротивления приводят к диссипации энергии (диссипация < лат. dissipatio – разгонять, рассеивать).

При определенных условиях суммарное уменьшение энтропии за счет обмена потоками с внешней средой может превысить ее внутреннее производство. Тогда неупорядоченное однородное состояние системы может потерять устойчивость. В ней возникают и могут возрасти до макроскопического уровня т.н. крупномасштабные флуктуации. При этом из хаоса могут возникнуть структуры, которые последовательно начнут переходить во все более упорядоченные. Образование этих структур происходит не из=за внешнего воздействия, а за счет внутренней перестройки системы, поэтому это явление и получило название самоорганизации. При этом энтропия, отнесенная к тому же значению энергии, убывает. Пригожин назвал упорядоченные образования, возникающие в диссипативных системах в ходе неравновесных необратимых процессов, диссипативными структурами.

На макроуровне диссипативность проявляется как хаос. На микроуровне хаос – это не разрушающий фактор, а сила, выводящая систему путь образования новых структур.

Бифуркации. Выше было сказано, что нелинейная система уравнений, которой описывается практически любая реальная сложная система, имеет не одно, а подчас целый спектр решений. Ответвления от известного решения появляются при изменении значения параметров системы. Поэтому мы введем здесь еще одно понятие - управляющие параметры (параметры порядка). Изменения управляющих параметров способны вызвать катастрофические, т.е. большие скачки переменных системы, и эти скачки осуществляются практически мгновенно.

Путь на изолированном острове выводятся летом насекомые численностью xj и откладывают яйца. Потомство их на следующее лето появится численностью xj+1 = cxj (1- xj )­. Рост популяции насекомых описывается первым членом в правой части уравнения xj, а убыль – вторым. Параметр роста (коэффициент пропорциональности) с является управляющим параметром. При с<1 популяция при увеличении j убывает и исчезает. В области 1<c<3 численность приближается к значению x = 1 - (1/c). Следующий диапазон 3<c<3,4 соответствует двум ветвям решения и при определенных условиях численность может колебаться между ними (рис. 1). Т.е. она растет резко от малого значения, и откладывается много яиц. Но перенаселенность, возникающая на следующий год, вновь снижает численность в следующем году до малого значения., так что период колебания численности равен двум годам. Далее, при 3,4<c<3,54 имеем уже 4 ветви, и возникает 4—стадийный цикл колебаний и. т.д. Подобные решения имеют место для широкого класса систем химических, электрических, гидродинамических и т.д.