Смекни!
smekni.com

Концепции современного естествознания 14 (стр. 12 из 57)

Существует определенная величина, называемая энергией, которая не меняется ни при каких превращениях, происходящих в природе. Исключений из закона сохранения энергии не существует.

Контрольные вопросы

1. Почему исследование тепловых явлений и фазовых переходов выявило несостоятельность лапласовского детерминизма?
2. Что такое микропараметры, макропараметры при исследовании тепловых явлений?
3. С чем было связано изучение тепловых явлений и когда оно началось?
4. Назовите ученых, чьи труды легли в основу физики тепловых явлений.
5. Что такое консервативные силы? Диссипативные силы? Приведите примеры.

6. Для каких систем справедлив закон сохранения механической энергии?
7. Что такое потенциальная энергия? Только ли к механическим системам применимо понятие потенциальной энергии? Поясните.
8. Объясните кратко теорию теплорода.
9. Какие опыты, опровергающие теорию теплорода, были проведены Румфордом?
10. Почему теплоемкости газа в процессах при постоянном давлении (Ср) и при постоянном объеме (Сv) неодинаковы? Кто из ученых впервые обнаружил этот факт?

11. Что такое термодинамика? Что она изучает?
12. Что изучает молекулярно-кинетическая теория?
13. Что такое статистическая физика? Откуда такое название?
14. Сформулируйте первое начало термодинамики.
15. С чем (кем) можно образно сравнить первое начало термодинамики?

Литература

1. Дягилев Ф.М. Концепции современного естествознания. – М.: Изд. ИМПЭ, 1998.
2. Концепции современного естествознания./ под ред. проф. С.А. Самыгина, 2-е изд. – Ростов н/Д: «Феникс», 1999.
3. Дубнищева Т.Я.. Концепции современного естествознания. Новосибирск: Изд-во ЮКЭА, 1997.
4. Ремизов А.Н. Медицинская и биологическая физика. – М.: Высшая школа, 1999.

Лекция 7. Термодинамическая картина мира (II). Второе начало термодинамики

1. Идеальный цикл Карно и сущность II начала термодинамики
2. Энтропия. Термодинамическая трактовка
3. Энтропия. Вероятностная трактовка
Контрольные вопросы
Литература

Второе начало термодинамики играет важнейшую роль в понимании процессов и явлений природы.

Впервые II Начало было, фактически, сформулировано пусть в несовершенной форме, еще в начале 19-го века и в этом виде понятно любому человеку, поскольку он сталкивается с ним в своем повседневном опыте.

Так, в 1811 г. Жан-Батист Фурье сформулировал закон теплопроводности, согласно которому количество теплоты, которое переносится в единицу времени через единицу площади поверхности вдоль какого-либо направления (т.е. через единицу длины), прямо пропорционально величине изменения температуры вдоль этого направления.

где q – поток тепла в направлении х на единицу длины за единицу времени, j(x,y,t) – распределение температуры.

При этом количество теплоты переносится от участков с большей температурой в направлении участков с меньшей температурой и никогда наоборот.. Теплопроводность приводит к все большему выравниванию температур до тех пор, пока распределение температуры во всех точках пространства рассматриваемой изолированной системы не станет одинаковым.

Фактически, закон теплопроводности уже выходил за рамки классической ньютоновской механики по той причине, что описывал необратимый процесс, а все законы ньютоновской механики являются обратимыми, инвариантными относительно направления времени. Так в науку вошло понятие необратимости, дальнейшее развитие которого связано с работой С. Карно по исследованию действия паровых машин.

1. Идеальный цикл Карно.

С. Карно, наблюдая за действием паровой машины, обратил внимание, что используемый для перемещения цилиндра пар затем выпускается в среду с меньшей температурой, где он превращается в воду (т.н. конденсат) и далее не используется. Карно задумался о возможности использования отработанного конденсата в котел, где он вновь нагреется, превратится в пар, который при своем дальнейшем расширении вновь совершит работу над поршнем. Таким образом, вода пройдет полный цикл. Однако такой непрерывный циклический процесс возможен лишь при наличии двух нагревателей: нагревателя при высокой температуре Т1 и холодильника при Т2.

Рассмотрим схематично идеальный цикл Карно. Он состоит из двух изотермических и двух адиабатических процессов.

Изотермический процесс. Пусть газ, находящийся над поршнем в цилиндре, находится в равновесии с окружающей средой. Будем медленно выдвигать поршень из цилиндра, не нарушая равновесия в каждый данный момент и сохраняя постоянной температуру газа. Этот процесс соответствует закону Бойля-Мариотта PV=const. (на рисунке – переход из точки 1 в точку 2). Заметим, что если опять, медленно возвращая поршень в исходной положение, сжимать газ, система из точки 2 вернется в точку 1, так как изотермический процесс обратим [1].

Адиабатический процесс. Как известно, это процесс без теплообмена с окружающей средой, т.е. процесс в некотором идеально теплоизолированном сосуде. Этот процесс тоже очень медленный, так что температура во время сжатия или расширения выравнивается во всех точках, но меняется в зависимости от объема.

Уравнение адиабатического процесса PV g = const, где g = cp/cv.

Цикл Карно состоит из двух изотермических и двух адиабатических процессов, которые образуют на графике в координатах PV криволинейный четырехугольник (см. рис. 1а). Адиабаты круче изотерм – они образуют боковые линии. Схемы соответствующих процессов приведены на рис. 1б.

Процесс (1)-(2): от нагретого тела с температурой Т1 тепло подводится (при постоянной температуре) к газу, который расширяется при постоянной температуре.

Процесс (2)-(3): газ расширяется в условиях полной теплоизоляции сосуда от окружающей среды.

Процесс (3)-(4): тепло отнимается при изотермическом процессе и отдается холодному телу с температурой Т2.

Процесс (4)-(1), замыкающий цикл соответствует адиабатическому сжатию.

Пусть в процессе (1)-(2) газ получает от холодильника теплоту Q1, а холодильнику отдает теплоту Q2. Тогда за весь цикл он получит теплоту Q1 – Q2, равную совершенной работе А.

Тогда КПД теплового двигателя, работающего по циклу Карно:

КПД = A1/Q1 = (Q1 – Q2)/Q1 . (1)

Можно показать, что Q1/Q2 = T1/T2 (для случая идеального газа).

Соотношение полученного тепла к отданному теплу равно отношению абсолютных температур нагревателя и холодильника.

Тогда КПД = (Q1 – Q2)/Q1 = 1 – Q2/Q1 = 1 – T2/T1 = (T1 – T2)/T1. (2)

Получается, что в случае цикла Карно КПД при превращении тепла в работу зависит только от температуры нагревателя и холодильника (таким образом, процесс не зависит ни от количества используемого газа, ни от начальных значений давления или объема).

Вспомним, что площадь, ограниченная криволинейным четырехугоугольником, изображающим идеальный цикл Карно, равна полной работе, совершаемой газом, а площадь под кривыми (1)-(4) и (4)-(3) - работе, совершенной над газом, т.е. затраченной.

Сущность второго начала термодинамики. Возможность построения машины без холодильника, т.е. с КПД = 1, которая могла бы превращать в работу всю теплоту, заимствованную у теплового резервуара, не противоречит закону сохранения энергии. Такая машина, по сути, была бы аналогична perpetuum mobile (вечному двигателю), так как могла бы производить работу за счет практически неисчерпаемых источников энергии, содержащихся в воде морей, океанов, атмосфере и недрах Земли. Такую машину У. Оствальд (1853-1932) назвал perpetuum mobile II рода ( в отличие от perpetuum mobile I рода – вечного двигателя, производящего работу из ничего). Карно же исходил из невозможности вечного двигателя, опираясь на многочисленные опытные факты и утверждая, что в любом непрерывном процессе превращения теплоты от горячего нагревателя в работу непременно должна происходить отдача тепла холодильнику.

Таким образом, здесь проявляется общее свойство теплоты – уравнивание температурной разницы путем перехода от теплых тел к холодным. Это положение Клаузиус и предложил назвать «Вторым началом механической теории теплоты». Если Первое начало термодинамики утверждает закон сохранения энергии, ее баланс, то Второе начало определяет направления превращения энергии, и если в предыдущей лекции Первому началу была сопоставлена роль «бухгалтера», то Второе начало выступает скорее как «диспетчер», определяющий направление энергетических потоков.

2. Энтропия. Термодинамическая трактовка.

Итак, для идеальной машины Карно из формулы (2) следует

Q1/T1 = Q2/T2или Q1/T1 - Q2/T2 = 0.

Для того, чтобы учесть, что Q2 отдается холодильнику, берем его со знаком “ - “. Тогда имеем:

Q1/T1 + Q2/T2 = 0

Далее будем писать DQ вместо Q, подчеркивая, что речь идет о некоторой порции DQ1, полученной рабочим телом от нагревателя и порции DQ2, потерянной им в холодильнике.

DQ1 1 + DQ22 = 0

Как видим, эта запись напоминает закон сохранения, но при этом появляется некоторая “интересная” величина DQ /Т.