Селекция микроорганизмов позволяет получать ферменты, витамины, гормоны, необходимые для лечения ряда заболеваний. Развитие генной инженерии открывает широкие перспективы для производства биологически активных соединений и лекарственных веществ. Так, например, с помощью методов генной инженерии был получен ген гормона инсулина и затем встроен в геном кишечной палочки. Такой штамм кишечной палочки способен синтезировать человеческий инсулин, используемый для лечения сахарного диабета. Подобным образом в настоящее время получают соматотропин (гормон роста) и другие гормоны человека, интерферон, иммуногенные препараты и вакцины.
Знание закономерностей размножения и распространения вирусов, болезнетворных бактерий, простейших, червей необходимо для борьбы с инфекционными и паразитарными заболеваниями человека и животных.
Эксперименты на животных моделируют многие патологические процессы, позволяющие понять сущность того или иного заболевания, установить принципы восстановления поврежденных клеток, тканей и органов, определить оптимальную тактику лечения и профилактики. Успехи иммунологии уже в настоящее время позволяют осуществлять трансплантацию жизненно важных органов, производить диагностику многих заболеваний, снижать уровень инфекционной заболеваемости
Общебиологические закономерности используются при решении самых разных вопросов во многих отраслях народного хозяйства. Быстрые темпы роста населения планеты, постоянное уменьшение территорий, занятых сельскохозяйственным производством, привели к глобальной проблеме современности — производству продуктов питания.
Эту задачу способны решать такие науки, как растениеводство и животноводство, базирующиеся на достижениях генетики и селекции.
Благодаря знанию законов наследственности и изменчивости можно создавать высокопродуктивные сорта культурных растений и пород домашних животных, что позволит интенсивно вести сельскохозяйственное производство и удовлетворить потребности населения планеты в пищевых ресурсах.
Биологические знания помогают в борьбе с вредителями и болезнями культурных растений, паразитами животных. Они играют важную роль в совершенствовании лесного и рыбного хозяйства, звероводства.
Использование в промышленности, машиностроении, кораблестроении принципов организации живых существ (бионика) приносит в настоящее время и даст в будущем значительный экономический эффект.
Прогресс науки и техники, создание и использование новых технологий могут наносить ущерб биосфере (порой непоправимый). Загрязнение окружающей среды отходами промышленного производства ставит вопрос о выживании, а нередко и о вымирании многих видов животных и растений. Учащение экологических катастроф наносит в группу риска все живое на планете. Задачи сохранения живых организмов, восстановления их популяций в естественной среде обитания решают биологи всего мира.
Решению таких важных проблем современности, как охрана окружающей среды, рациональное использование природных ресурсов, помогает экология. Она предусматривает выявление и устранение отрицательных последствий воздействия человека на природу (загрязнение среды многочисленными вредными веществами), определение режимов рационального использования резервов биосферы.
Актуальной задачей экологии является обеспечение сохранности биосферы и способности природы к самовоспроизведению
Значение биологии для человека невозможно переоценить: биология является теоретической основой ведения промыслового, сельского и лесного хозяйства, на её достижения опирается медицина, пищевая и даже военная промышленность; знание её законов помогает сохранять биоразнообразие на планете и моделировать будущее развитие человечества в XXI в.
Характеристика неклеточных форм жизни.
Во всем многообразии организмов можно выделить две резко различные группы форм жизни:
· неклеточные;
· клеточные.
К неклеточным формам жизни относятся вирусы. Вирусы проявляют жизнедеятельность только в стадии внутриклеточного паразитизма. Благодаря своей незначительной величине, вирусы могут проходить через любые фильтры, в том числе каолиновые, имеющие наиболее мелкие поры, поэтому первоначально они назывались фильтрующимися вирусами.
Существование вирусов было доказано русским ботаником Д.И. Ивановским в 1892 г., но увидеть их удалось лишь намного позже. Большинство вирусов имеют субмикроскопические размеры, поэтому для изучения их строения пользуются электронным микроскопом.
Наиболее мелкие вирусы, например возбудитель ящура, немногим превышают молекулу яичного белка, но встречаются и крупные вирусы, такие как возбудитель оспы, которые видны в световой микроскоп.
Вирусы (лат. «яд») – облигатные внутриклеточные паразиты. Они поражают все группы живых организмов, живут в клетках растений, животных, человека и даже бактерий (бактериофаги). Открыты в 1892 году русским ботаникомДмитрием Ивановским, однако долгое время оставались неисследованными из-за того, что имели мельчайшие размеры (от 20 до 300 нм).
Только появление электронного микроскопа позволило изучить эти существа.
Классификация вирусов их практическое значение
Строение вирусов. Наряду с одно- и многоклеточными организмами в природе существуют и другие формы жизни. Таковыми являются вирусы, не имеющие клеточного строения. Они представляют собой переходную форму между неживой и живой материей.
Вирусы (лат. virus — яд) были открыты в 1892 г. русским ученым Д. И. Ивановским при исследовании мозаичной болезни листьев табака.
Каждая вирусная частица состоит из РНК или ДНК, заключенной в белковую оболочку, которую называюткапсидом. Полностью сформированная инфекционная частица называется вирионом. У некоторых вирусов (например, герпеса или гриппа) есть еще и дополнительная липопротеидная оболочка, возникающая из плазматической мембраны клетки хозяина.
Поскольку в составе вирусов присутствует всегда один тип нуклеиновой кислоты — ДНК или РНК, вирусы делят также на ДНК-содержащие и РНК-содержащие. При этом наряду с двухцепочечными ДНК и одноцепочечными РНК встречаются одноцепочечные ДНК и двухцепочечные РНК. ДНК могут иметь линейную и кольцевую структуры, а РНК, как правило, линейную. Подавляющее большинство вирусов относится к РНК-типу.
Вирусы способны размножаться только в клетках других организмов. Вне клеток организмов они не проявляют никаких признаков жизни. Многие из них во внешней среде имеют форму кристаллов. Размеры вирусов колеблются в пределах от 20 до 300 нм в диаметре.
Хорошо изучен вирус табачной мозаики, имеющий палочковидную форму и представляющий собой полый цилиндр. Стенка цилиндра образована молекулами белка, а в его полости расположена спираль РНК (рис. 1). Белковая оболочка защищает нуклеиновую кислоту от неблагоприятных условий внешней среды, а также препятствует проникновению ферментов клеток к РНК и ее расщеплению.
Рис.1. Схема строения вируса (а) и бактериофага (б); 1— нуклеиновая кислота; 2 — белковая оболочка; 3 —полый стержень; 4 — базальная пластинка; 5 — отростки (нити).
Молекулы вирусной РНК могут самовоспроизводиться. Это означает, что вирусная РНК является источником генетической информации и одновременно иРНК.
Поэтому в пораженной клетке в соответствии с программой нуклеиновой кислоты вируса на рибосомах клетки хозяина синтезируются специфические вирусные белки и осуществляется процесс самосборки этих белков с нуклеиновой кислотой в новые вирусные частицы.
Клетка при этом истощается и погибает. При поражении некоторыми вирусами клетки не разрушаются, а начинают усиленно делиться, часто образуя у животных, в том числе и человека, злокачественные опухоли.
а) Вирусы классифицируются по сердцевине: ДНК-содержащие и РНК-содержащие (ретро) вирусы.
б) По структуре капсомеров.
Изометрические (кубические), спиральные, смешанные.
в) По наличию или отсутствию дополнительной липопротеидной оболочки
г) По клеткам-хозяинам
Кроме этих классификаций есть еще много других. На пример, по типу переноса инфекции от одного организма к другому.
Особую группу представляют вирусы бактерий — бактериофаги, или фаги, которые способны проникать в бактериальную клетку и разрушать ее.
Тело фага кишечной палочки состоит из головки, от которой отходит полый стержень, окруженный чехлом из сократительного белка. Стержень заканчивается базальной пластинкой, на которой закреплены шесть нитей (см. рис. 5.2). Внутри головки находится ДНК. Бактериофаг при помощи отростков прикрепляется к поверхности кишечной палочки и в месте соприкосновения с ней растворяет с помощью фермента клеточную стенку. После этого за счет сокращения головки молекула ДНК фага впрыскивается через канал стержня в клетку. Примерно через 10—15 мин под действием этой ДНК перестраивается весь метаболизм бактериальной клетки, и она начинает синтезировать ДНК бактериофага, а не собственную. При этом синтезируется и фаговый белок. Завершается процесс появлением 200— 1 000 новых фаговых частиц, в результате чего клетка бактерии погибает.
Бактериофаги, образующие в зараженных клетках новое поколение фаговых частиц, что приводит к лизису (распаду) бактериальной клетки, называются вирулентными фагами.
Некоторые бактериофаги внутри клетки хозяина не реплицируются. Вместо этого их нуклеиновая кислота включается в ДНК хозяина, образуя с ней единую молекулу, способную к репликации. Такие фаги получили название умеренных фагов или профагов.