Министерство сельского хозяйства
ФГОУ ВПО Ульяновская государственная сельскохозяйственная академия
Кафедра биологии, ветеринарной генетики, паразитологии и экологии
КОНТРОЛЬНАЯ РАБОТА
ПО ДИСЦИПЛИНЕ "КОНЦЕПЦИИ СОВРЕМЕННОГО ЕСТЕСТВОЗНАНИЯ"
студента 1 курса
заочного отделения "Экономического факультета"
по специальности "Финансы и кредит"
с сокращенным сроком обучения
Антонова Леонида Владимировича
Шифр: 08066
УЛЬЯНОВСК, 2008г.
Контрольные вопросы
1. Насколько многообразен мир галактик? Каково содержание и значение закона Хаббла?
2. Опишите эволюцию наука как переход от одной научной картины мира к другой
3. Поясните основные гипотезы происхождения живого
1. Насколько многообразен мир галактик? Каково содержание и значение закона Хаббла?
Мир галактик столь же разнообразен, как и мир звезд. Долгое время туманные пятнышки, наблюдаемые в телескопы, считали туманностями, относящимися к Галактике (воспринимаемой как вся Вселенная). Это — огромные вращающиеся системы звезд разнообразные по внешнему виду и физическим характеристикам, размером 1—100 кпк. В них находится от 107 до 1012 звезд. Небольшие галактики часто являются спутниками больших галактик. Невооруженным глазом можно увидеть ближайшие к галактики — Магеллановы Облака (в Южном полушарии) и туманность Андромеды (в Северном полушарии), они входят в местную группу галактик (рис. 1). Остальные галактики видны только в телескоп как пятнышки. Классификация галактик в каталогах — М с номером. Так, М31 — туманность Андромеды. В каталоге, составленном в СССР в 60-е гг. XX в., более 30 000 галактик.
Рис.1. Местная группа галактик
Вид галактики на фотобумаге несколько отличен от ее вида на негативе и зависит от того, в каких лучах был снят. Коллектив Астрономического института при Московском университете во главе с Б.А. Воронцовым - Вельяминовым составил "Морфологический каталог галактик" (MGC) из 30000 галактик ярче 17-й звездной величины и атлас взаимодействующих галактик. Оказалось, что некоторые галактики отличаются мощным радиоизлучением, которое больше оптического. Их назвали радиогалактиками (например, Лебедь А). Позднее стало ясно, что галактики не покоятся относительно расширяющегося недеформируемого фона, а имеют собственные движения, изучение которых позволит определить протяженность неоднородностей в распределении массы, а эти неоднородности очень велики и отражают сложные процессы начала расширения.
Деление галактик на спиральные, эллиптические и неправильные, основанное на внешнем виде, было введено в 1925 г. американским астрономом Э. Хабблом, изучившим более тысячи галактик (рис.1). Его классификация отражает и существенные физические различия между галактиками.
Спиральные галактики состоят из двух подсистем — дисковой и сферической. Сферическая часть напоминает эллиптическую галактику, дисковая — сжата и содержит много межзвездной пыли, газа и молодых звезд. Более молодые и яркие звезды сгруппированы в спиральные рукава. Оказалось, что почти половина галактик имеют спиральную форму. В центре таких галактик — красивое и яркое ядро, большое и тесное скопление звезд. Из ядра выходят закручивающиеся вокруг него ветви, состоящие из молодых звезд и облаков нейтрального газа. Таковы галактики Млечный Путь и туманность Андромеды. Эллиптические галактики несколько похожи на них, но с меньшими рукавами. Среди наиболее ярких галактик они составляют 25 %; считают, что они состоят из более старых звезд (возраста Солнца или старее), так как имеют красноватый оттенок. Они почти не содержат межзвездного газа, и там не формируются новые звезды. Вращение в них происходит с небольшими скоростями (менее 100 км/с), а равновесие поддерживается за счет хаотических передвижений звезд по радиально вытянутым орбитам. Такую галактику наблюдают в созвездии Девы, она имеет почти шаровидную форму и весьма активна. В ядре эллиптической радиогалактики Кентавра А удалось обнаружить на расстоянии в 106 св. лет отдельные детали размером в 100 св. лет, отражающие бурную активность. Неправильные галактики имеют небольшую массу и размер, в них много межзвездного газа. Заметны как очаги звездообразования какие-то клочки. Примером таких галактик являются наиболее близкие к Земле две небольшие галактики Магелланова Облака, которые даже называют спутниками Млечного Пути. До Большого Облака около 200 тыс. св. лет, до Малого — всего 170 тыс. св. лет. В Большом Облаке в 1987 г. Наблюдалась вспышка Сверхновой звезды, а при помощи обсерватории "Кванта" орбитального комплекса "Мир" в 1999 г. было зарегистрировано жесткое рентгеновское излучение. Наблюдения с помощью "Гранат" позволили подтвердить гипотезу о том, что в центре нашей Галактики – черная дыра, масса которой в миллионы раз больше солнечной.
Отдельные звезды в галактиках стали различать только в 30-е гг. В 1923 г. Хаббл с помощью 2,5-метрового рефлектора открыл в спиральной туманности созвездия Андромеды несколько переменных звезд (т.е. с меняющимся блеском) и цефеиду. По периоду колебаний блеска цефеиды он определил ее звездную величину и расстояние до нее — 900 тыс. св. лет. Туманность М31 находится вне нашей Галактики. Поправка на поглощение излучения межзвездным газом увеличила это расстояние до 2,2 млн. св. лет, что превышает более чем в 20 раз размеры нашей Галактики. Хаббл подсчитал число галактик до 20-й звездной величины на 1283 участках неба. Он нашел, что на один квадратный градус на небесной сфере приходится в среднем 130 галактик. Небесная сфера содержит 41 253 квадратных градуса, поэтому общее число галактик до 20-й звездной величины составляет 5,4 млн. (звезды до 20-й величины можно наблюдать в 2,5-метровый телескоп Хаббла).
Галактики распределены почти равномерно по всем направлениям, хотя образуют скопления и группы. Тесным является скопление из 40 тысяч галактик в созвездии Волосы Вероники (Северное полушарие), находящееся на расстоянии около 400 млн. св. лет и занимающее почти 12°. Иногда группы столь тесные, что галактики как бы проникают друг в друга. Так, в нашу Галактику частично заходит галактика Малое Магелланово Облако. Радиусы больших скоплений (около тысячи галактик) составляют до 1 — 4 Мпк или даже 10 Мпк. Такое скопление наблюдается в созвездии Девы, находящемся на расстоянии 15 Мпк от нас — оно и есть центр Местного сверхскопления галактик, куда входит и Местная группа галактик. Размеры таких скоплений растут в связи с общим расширением Вселенной.
Лучевые скорости галактик первым определил Слайфер (1912). К 1925 г. он измерил скорости 41 галактики, из них 36 удалялись от нас со скоростями до 1000 км/с, и лишь несколько приближались. Хаббл измерил расстояния до галактик по цефеидам и ярким звездам и установил, что скорости "разбегания" галактик растут пропорционально расстоянию до них. Закон Хаббла: V= Hr, где Н — постоянная, получившая название постоянной Хаббла.
Сначала Хаббл считал, что Н= 500 км/(с-Мпк). В настоящее время считают от 50 до 100 км/(с- Мпк). С помощью красного смещения Хаббла оценивали расстояние до галактик и до края видимой Вселенной — Метагалактики. Поскольку увеличение красного смещения сопровождается уменьшением яркости галактики, то заключили, что закон V = Hr действительно отражает расширение Метагалактики.
В 1963 г. голландский астрофизик М.Шмидт исследовал спектр достаточно яркой звезды 13-й величины, отождествленной с радиоисточником ЗС 273. Линии водорода были смещены на огромную величину, соответствующую скорости 42000 км/с, а по закону Хаббла расстояние до источника должно быть около 600 Мпк, или 2 млрд. св. лет. Две другие линии совпадали с линиями дважды ионизованного кислорода и ионизованного магния. Затем нашли источник с красным смещением линий, т.е. он удалялся от нас. Если это смещение связано с эффектом Доплера, то первый источник ЗС 273 приближался со скоростью света, равной 48 000 км/с, а второй — удалялся со скоростью света 0,8 с = 240000 км/с. При этом обнаружили, что рядом находится очень много объектов, которые движутся вместе, т.е. это далекие галактики. Тогда откуда такая яркость? Астрономы А.С.Шаров и Ю.Н.Ефремов изучили старые фотографии этого объекта и оказалось, что объект сильно изменил свой блеск. Выходило, что галактика, состоящая из триллионов звезд, организует звезды, чтобы они синхронно меняли свой блеск?! Значит, излучали не звезды, а нечто иное, мощность которого соответствовала мощности ядер сейфертовских галактик. Зная расстояние до них и видимую звездную величину, можно подсчитать светимость — она фантастически большая: 1053 Дж/с. Эти космические объекты нового типа получили название квазизвезд, или квазаров.
Квазаров сейчас известно уже около тысячи. Внешне похожие на звезду, они излучали в сотни раз больше энергии, чем наша Галактика с ее почти 200 млрд. звезд. Квазары занесены в каталоги, имеется статистика их свойств. Похоже, что в раннюю эпоху Вселенной квазаров было больше. Почти все они излучают и в рентгеновском диапазоне, и тоже переменно. Переменность потоков мощного излучения свидетельствует о том, что квазары должны быть невелики — около 1013 м. Они распределены почти равномерно по направлениям, но находятся на разных расстояниях. Свет от ближайшего к нам квазара идет 1 млрд. лет, а от самого удаленного — 12 млрд. лет, значит, мы видим их такими, какими они были от 1 до 12 млрд. лет назад, тем самым, прослеживая время образования этих необычных объектов до образования Солнечной системы.
Спектр квазаров по распределению энергии соответствует синхротронному излучению: много излучают в ультрафиолете и мощное инфракрасное излучение в широкой полосе около 70 мкм. Излучение в рентгеновском диапазоне велико; для квазара ЗС 273, например, оно по мощности в 50 раз больше в радиодиапазоне и вдвое превышает оптическое. За время жизни квазар излучает около 1067 Дж. Для обоснования источника такой огромной энергии предложено много вариантов, но пока ни один не может быть принят. Если это аннигиляция, то из связи энергии с массой такая энергия эквивалентна потере 5 млн солнечных масс (Мс), но известно, что состояние звезд с массой 100 Мс неустойчиво (притяжение верхних слоев не уравновешивается ростом давления с глубиной). Термоядерный источник в 140 раз менее эффективен аннигиляционного. Может, равновесие поддерживается быстрым вращением массивной звезды вокруг оси, магнитными полями и вихревыми движениями в оболочке. В квазарах почти нет легких элементов. Считают, что они произошли от огромного взрыва в прошлом. Если это — образование типа "сверхзвезды", то равновесие в них поддерживается быстрым вращением вокруг оси, магнитными полями и вихревыми движениями в оболочке.