На слайде видно, что 21-я хромосома представлена трижды. Две копии вместо одной чаще присутствуют в еще неоплодотворенной яйцеклетке, а не в сперматозоиде. Это было выявлено по анализу микросателлитов, о чем будет рассказано на следующих лекциях. Сейчас до трех месяцев беременности можно провести хромосомный анализ, для этого берут клетки околоплодной жидкости и смотрят, есть ли трисомия по 21-ой хромосоме. Во многих европейских странах после 35 лет анализ беременной женщины на выявление у плода синдрома Дауна обязателен, в связи с повышением частоты рождаемости больных детей при увеличении возраста матери.
Теперь поговорим о хромосомных перестройках. Основные типы хромосомных перестроек:
дупликация – удвоение сегмента
делеция – утрата сегмента,
инверсия – переворот сегмента,
транслокация – перенос сегмента на другую хромосому
Все они являются причинами многих болезней.
Перестройки хромосом в гаметах часто приводят к болезням человека - нарушениям морфологии, физиологии и поведения, особенно часто встречается дупликация и делеция, как правило, все такие болезни сопровождаются заторможенным умственным развитием, то есть чаще всего какие бы ни были хромосомные перестройки, они затрагивают развитие наших умственных способностей, ну а кроме этого болезни сопровождаются чаще всего недоразвитием каких-либо органов (например, маленькая голова).
В эволюции геномные и хромосомные мутации чаще фиксируются у растений, реже у животных. Геномные мутации у животных обычно различают таксоны более высоких порядков например отряды (сельдевые и лососевые), а у растений это могут быть и виды (пшеница и другие культурные растения). Анеуплоидия и перестройки хромосом в гаметах обычно приводят к болезням у животных человека - нарушениям морфологии, физиологии, поведения, и резко снижают возможность оставить потомство. Тем не менее сотни тысяч таких случаев зафиксированы на сегодня эволюцией – это почти любая пара родственных видов, различающиеся по структуре кариотипа (набора хромосом). Ясно, что такие изменения когда-то произошли у индивида и затем закрепились в поколениях.
Например, хромосома №2 человека образована при транслокации, произошедшей у наших предков после ответвления от ствола всех приматов: у орангутанга, гориллы и даже шимпанзе (5 млн. лет расхождения). У всех этих наших родственников по две независимых хромосомы, которые лишь у человека оказались соединенными. Часто, хотя и не всегда, перестройки приводят к понижению жизнеспособности, но в нашем случае получилось не так, мы получили две разных хромосомы шимпанзе, которые соответствуют хромосоме №2 человека. Это видно при поперечном окрашивании хромосом, которые выявляют идентичные в геноме фрагменты хромосом. Все люди на Земле имеют общего предка, у которого произошла эта транслокация (меньше 5 млн. лет назад)
Число хромосом у млекопитающих может различаться в десятки раз, хотя размер генома отличается менее чем на 20%. У человека число пар хромосом 23, а у лошади – 66, у обитающего в Азии оленя-мунтжака – 6 хромосом. Исключение составляет южно-американский грызун, называемый красной вискашевой крысой (латинское название Tympanoctomys barrerae, английское – red viscacha rat), хотя крысе оно весьма отдаленный родственник). У этого животного геном не диплоидный, а тетраплоидный, содержит в два раза больше ДНК, чем у остальных млекопитающих, и 102 хромосомы.
Если до общего предка млекопитающих около 200 миллионов лет и около 60 транслокаций (перестроек разных хромосом), то 1 транслокация сохраняется и дает начало новому виду не реже чем раз в 3 млн лет. А так как недетектируемых внутрихромосомных перестроек больше на 1-2 порядка, то это означает, что носители таких перестроек выживают гораздо чаще, нежели раз в 3 млн. лет. Последний раз такая перестройка в линии человека произошла не более 5 млн. лет назад.
Геномные и хромосомные мутации могут появляться и в соматических клетках человека и животных. В этом случае они не передаются потомству, но часто связаны с развитием рака. Реципрокная транслокация фрагментов между хромосомами 8 и 14 в лимфоцитах человека приводит к лимфоме Бёркита: к гену иммуноглобинов присоединяется ген онкогена с-MYC, меняя его регуляцию.
Таким образом, перестройки, происходящие в соматических клетках, влияют только на нас, а на следующее поколение не влияют. Те перестройки, которые происходят в клетках зародышевого пути, могут пройти через эволюционное «сито» и остаться в поколениях, Это может привести к репродуктивной изоляции индивидов с перестройками от других индивидов внутри данного вида.
Хотя в клетках зародышевого пути геном остается постоянным, изменение структуры генов и генома может быть нормальной частью жизненного цикла. У некоторых эукариот число хромосом в соматических клетках отличается от числа хромосом в клетках зародышевого пути. У некоторых простейших в определенной фазе развития геном распадается по на несколько тысяч хромосом, предположительно соответствующих отдельным генам. Размер генома вегетативных клеток и клеток зародышевого пути также может различаться. Например, у некоторых круглых червей в соматических клетках (но не в клетках зародышевого пути!) подавляющая часть генома утрачивается (явление называется диминуцией хроматина). У человека перестройки генов иммуноглобулинов в лимфатических клетках - условие образования разных антител. Только при таком условии в организме может образовываться то разнообразие антител, которое может обеспечить необходимую защиту. То есть перестройки генома могут быть управляемыми и необходимыми.
Несколько слов про генные мутации. Генные мутации являются скачкообразными изменениями отдельных локусов хромосом – генов. Мутантные гены сохраняют свойство репродукции при делении ядра клетки, вследствие чего мутационные изменения наследуются. Мутации могут быть прямыми (нуклеотид Т в данной позиции заменен на нуклеотид С) и обратными (мутантный нуклеотид С в данной позиции заменен на нуклеотид Т, характерный для дикого типа). Частота мутирования в обоих направления характерна для каждого локуса. Для разных типов мутаций она варьирует от 10-6-10-8 на нуклеотид на генерацию до 3*10-1. Спонтанный мутационный процесс обусловливается свойством самого гена, системой генотипа, физиологическим состоянием организма и колебанием факторов внешней среды. Каждый локус – ген может мутировать в несколько состояний, образуя серию множественных аллелей. Для примера скажем, что существует ген супрессора опухолей, где обнаружены сотни мутаций, при каждой из которой опухоль может развиться в разных местах.
"Горячие пятна" мутаций внутри гена распределены неравномерно. Они характерны не только для спонтанного мутирования, но и при воздействии определенными химическими агентами.
Например, разберем мутации в гене CFTR, которые вызывают муковисцидоз – заболевание, связанное с дефектом проводимости ионных каналов, проявляется в виде заболеваний легких и др. В этом гене описано уже больше тысячи разных мутаций. На графике представлена частота разных мутаций в разных частях гена, видно, что распределение частоты неравномерно в разных его участках – экзонах. Частота встречаемости в популяции разных мутаций одного гена различается в тысячи раз.
Если смотреть реальное распределение мутаций среди людей, оказывается, что каждая из них присутствует со своей частотой в группе, живущей на данной территории. Например для России мутация ΔF508 встречается у 80% больных. А остальные мутации составляют менее 20%, некоторые же не встретятся в России вообще.
На этом слайде показано, как растет частота мутаций с увеличением дозы облучения. Частота мутаций линейно растет с увеличением дозы радиоактивного облучения. «Безопасной» дозы облучения нет (нет порога). Повреждения происходят при любых дозах, так что понятие порога чисто юридическое.
На рисунке выше показано, что при воздействии мутагенами нет нижнего порога дозы. В данном случае показана ситуация с рецессивными мутациями, аналогичная ситуация и с доминантными. Поскольку все время есть какое-то фоновое мутагенное воздействие, то можно подумать, что число мутаций в поколениях должно все время расти
Действительно, после мутагенного воздействия (Хиросима, Чернобыль, Бхопал, Орандж эйджент) частота мутаций растет. Растет также и процент опухолевых заболеваний, так как повреждается геном соматических клеток. Однако после снятия мутагенного воздействия доля мутантов не увеличивается, а только снижается в поколениях из-за гибели и пониженной жизнеспособности мутантов. Если ребенок родился, значит наиболее существенные для развития гены у него нормальные, ведь в противном случае он бы умер на эмбриональной стадии. Основной летальный эффект мутаций реализуется еще на клеточном уровне, а не на организменном уровне. Клетка запрограммирована не пропускать мутации в следующее поколение. Есть специальный молекулярный механизм отслеживания повреждения в ДНК, еще до того как поврежденный участок понадобится для реализации функции. Если окажется, что ДНК повреждена и не может быть исправлена (репарирована), то в такой клетке станет работать запрограммированная система самоубийства. Вероятно, основная часть мутаций приводит к дефектам функционирования и гибели уже на стадии первых делений оплодотворенной яйцеклетки, меньшая часть проявляется позже и приводит к спонтанному аборту, еще реже – к рождению ребенка с аномалиями.
Хотя эта частота была повышенной после ядерного взрыва, уже через два поколения (сейчас) у жителей с Хиросимы частота наследственных аномалий и опухолевых заболеваний такая же и даже ниже, чем в других городах Японии, так как население этого города оказалось под пристальным вниманием врачей, проводилось больше профилактики и т.д. Что же касается опухолевых заболеваний, то во втором поколении частота заболеваний уже не будет больше, так как это эффект повреждения соматических клеток, не передающееся по наследству, не учитывая некоторые конкретные болезни.