Федеральное государственное образовательное учреждение
высшего профессионального образования
СМОЛЕНСКАЯ ГОСУДАРСТВЕННАЯ СЕЛЬСКОХОЗЯЙСТВЕННАЯ АКАДЕМИЯ
Кафедра агрономии и экологии
РЕФЕРАТ на тему:
“Генетика как наука о законах наследственности и изменчивости живых организмов”
Выполнила:
Студентка 1 курса экфака
11 группы
Котова П.В.
Проверил:
Прудников А.Д.
Смоленск 2009
Содержание
ВВЕДЕНИЕ
ГЛАВА 1. История генетики
ГЛАВА 2. Генетика как наука о законах наследственности
ГЛАВА 3. Генетика как наука о законах изменчивости
ЗАКЛЮЧЕНИЕ (ВЫВОДЫ)
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ
ВВЕДЕНИЕ
Генетика - дисциплина, изучающая механизмы и закономерности наследственности и изменчивости организмов, методы управления этими процессами. Она призвана раскрыть законы воспроизведения живого по поколениям, появление у организмов новых свойств, законы индивидуального развития особи и материальной основы исторических преобразований организмов в процессе эволюции. Первые две задачи решают теория гена и теория мутаций. Выяснение сущности воспроизведения для конкретного разнообразия форм жизни требует изучения наследственности у представителей, находящихся на разных ступенях эволюционного развития. Объектами генетики являются вирусы, бактерии, грибы, растения, животные и человек. На фоне видовой и другой специфики в явлениях наследственности для всех живых существ обнаруживаются общие законы. Их существование показывает единство органического мира.
Цель реферата: оформление, систематизация представлений и знаний о генетике как науке, изучающей законы наследственности и изменчивости организмов.
Основная задача данного реферата – рассмотрение генетики с позиций процессов наследования и изменения живых организмов.
ГЛАВА 1. История генетики
Первоначально генетика изучала общие законы наследственности и изменчивости на основании фенотипических данных.
Понимание механизмов наследственности, то есть роли генов как элементарных носителей наследственной информации, хромосомная теория наследственности и т. д. стало возможным с применением к проблеме наследования методов цитологии, молекулярной биологии и других смежных дисциплин.
Сегодня известно, что гены реально существуют и являются специальным образом отмеченными участками ДНК или РНК — молекулы, в которой закодирована вся генетическая информация. У эукариотических организмов ДНК свёрнута в хромосомы и находится в ядре клетки. Кроме того, собственная ДНК имеется внутри митохондрий и хлоропластов (у растений). У прокариотических организмов ДНК, как правило, замкнута в кольцо (бактериальная хромосома, или генофор) и находится в цитоплазме. Часто в клетках прокариот присутствует одна или несколько молекул ДНК меньшего размера — плазмид.
В 1865 году монах Грегор Мендель (занимавшийся изучением гибридизации растений в Августинском монастыре в Брюнне (Брно, ныне на территории Чехии) обнародовал на заседании местного общества естествоиспытателей результаты исследований о передаче по наследству признаков при скрещивании гороха (работа «Опыты над растительными гибридами» была опубликована в трудах общества в 1866 году). Мендель показал, что наследственные задатки не смешиваются, а передаются от родителей к потомкам в виде дискретных (обособленных) единиц. Сформулированные им закономерности наследования позже получили название законов Менделя. При жизни его работы были малоизвестны и воспринимались критически (результаты опытов на другом растении, ночной красавице, на первый взгляд, не подтверждали выявленные закономерности, чем весьма охотно пользовались критики его наблюдений).
Классическая генетика
В начале XX века работы Менделя вновь привлекли внимание в связи с исследованиями Карла Корренса, Эриха фон Чермака и Гуго Де Фриза по гибридизации растений, в которых были подтверждены основные выводы о независимом наследовании признаков и о численных соотношениях при «расщеплении» признаков в потомстве.
Вскоре английский натуралист Уильям Бэтсон ввёл в употребление название новой научной дисциплины – генетика (в 1905 году в частном письме и в 1906 году публично). В 1909 году датским ботаником Вильгельмом Йоханнсеном введён в употребление термин «ген».
Важным вкладом в развитие генетики стала хромосомная теория наследственности, разработанная, прежде всего, благодаря усилиям американского генетика Томаса Ханта Моргана и его учеников и сотрудников, избравших объектом своих исследований плодовую мушку Drosophila melanogaster. Изучение закономерностей сцепленного наследования позволило путем анализа результатов скрещиваний составить карты расположения генов в «группах сцепления» и сопоставить группы сцепления с хромосомами (1910—1913 гг.).
Молекулярная генетика
Эпоха молекулярной генетики начинается с появившихся в 1940—1950-х годах работ, доказавших ведущую роль ДНК в передаче наследственной информации. Важнейшими шагами стали расшифровка структуры ДНК, триплетного кода, описание механизмов биосинтеза белка, обнаружение рестриктаз и секвенирование ДНК.
Генетика в России и СССР
Если не считать опытов по гибридизации растений в XVIII веке, первые работы по генетике в России были начаты в начале XX века как на опытных сельскохозяйственных станциях, так и в среде университетских биологов, преимущественно тех, кто занимался экспериментальной ботаникой и зоологией.
После революции и гражданской войны 1917—1922 годов началось стремительное организационное развитие науки. К концу 1930-х годов в СССР была создана обширная сеть научно-исследовательских институтов и опытных станций (как в Академии наук СССР, так и во Всесоюзной академии сельскохозяйственных наук имени Ленина (ВАСХНИЛ)), а также вузовских кафедр генетики. Признанными лидерами направления были Вавилов, Кольцов, Серебровский, Четвериков и другие. В СССР издавали переводы трудов иностранных генетиков, в том числе Моргана, Мёллера, ряд генетиков участвовали в международных программах научного обмена. Американский генетик Мёллер работал в СССР (1934—1937), советские генетики работали за границей: Тимофеев-Ресовский — в Германии (с 1925 года), Добржанский — в США (с 1927 года).
В 1930-е годы в рядах генетиков и селекционеров наметился раскол, связанный с энергичной деятельностью Лысенко и Презента. По инициативе генетиков был проведён ряд дискуссий (наиболее крупные — в 1936 и 1939 годах), направленных на борьбу с подходом Лысенко, но их результаты были довольно неопределёнными.
На рубеже 1930—1940-х годов в ходе так называемого Большого террора большинство сотрудников аппарата ЦК ВКП(б), курировавших генетику, и ряд видных генетиков были арестованы, многие расстреляны или погибли в тюрьмах (в том числе Вавилов). После войны дебаты возобновились с новой силой. Генетики, опираясь на авторитет международного научного сообщества, снова попытались склонить чашу весов в свою сторону, однако с началом холодной войны ситуация значительно изменилась. В 1948 году на августовской сессии ВАСХНИЛ Лысенко, пользуясь поддержкой И. В. Сталина, объявил генетику лженаукой. Лысенко воспользовался некомпетентностью партийного руководства наукой, «пообещав партии» быстрое создание новых высокопродуктивных сортов зерна («ветвистая пшеница») и др. С этого момента начался период гонений на генетику, который получил название лысенковщины и продолжался вплоть до снятия Н. С. Хрущева с поста генерального секретаря ЦК КПСС в 1964 году.
Лично Т. Д. Лысенко и его сторонники получили контроль над институтами отделения биологии АН СССР, ВАСХНИЛ и вузовскими кафедрами. Были изданы новые учебники для школ и вузов, написанные с позиций «Мичуринской биологии». Генетики вынуждены были оставить научную деятельность или радикально изменить профиль работы. Некоторым удалось продолжить исследования по генетике в рамках программ по изучению радиационной и химической опасности за пределами организаций, подконтрольных Лысенко и его сторонникам.
Сходные с лысенковщиной явления наблюдались и в других науках. Наиболее известные кампании прошли в цитологии (в связи с учением Лепешинского о живом веществе), физиологии (борьба Быкова и его сторонников за «наследие» Павлова) и микробиологии (теории Бошьяна).
После открытия и расшифровки структуры ДНК, физической базы генов (1953 год), с середины 1960-х годов началось восстановление генетики. Министр просвещения РСФСР Столетов инициировал широкую дискуссию между лысенковцами и генетиками, в результате было опубликовано много новых работ по генетике. В 1963 году вышел в свет университетский учебник Лобачёва «Генетика», выдержавший впоследствии несколько изданий. Вскоре появился и новый школьный учебник «Общая биология» под редакцией Полянского, используемый, наряду с другими, и по сей день. В настоящее время исследования по генетике продолжаются в крупных научных центрах России.
ГЛАВА 2. Генетика как наука о законах наследственности
Основные методы генетики. Основным методом генетики на протяжении многих лет является гибридологический метод. Гибридизацией называется процесс скрещивания с целью получения гибридов. Гибрид это организм, полученный в результате скрещивания разнородных в генетическом отношении родительских форм. Гибридизация может быть внутривидовой, когда скрещиваются особи одного вида и отдаленной, если скрещиваются особи из различных видов или родов. При исследовании наследования признаков используются методы моногибридного, дигибридного, полигибридного скрещивания, которые были разработаны еще Г. Менделем в его опытах с сортами гороха. При моногибридном скрещивании наследование проводится по одной паре альтернативных признаков, при дигибридном скрещивании – по двум парам альтернативных признаков, при полигибридном скрещивании – по 3,4 и более парам альтернативных признаков. При изучении закономерностей наследования признаков и закономерностей изменчивости широко используется метод искусственного мутагенеза, когда с помощью мутагенов вызывают изменение в генотипе и изучают результаты этого процесса. Широкое распространение в генетике нашел метод искусственного получения полиплоидов, что имеет не только теоретическое, но и практическое значение. Полиплоиды обладают большой урожайностью и меньше поражаются вредителями и болезнями. Широко используется в генетике биометрические методы. Ведь наследуются и изменяются не только качественные, но и количественные. Биометрические методы позволили обосновать положение фенотипа и нормы реакции. С 1953 года особое значение для генетики приобрели биохимические методы исследования. Генетика вплотную занялась изучением материальных основ наследственности и изменчивости - генов. Объектом исследования генетики стали нуклеиновые кислоты, особенно ДНК. Изучение химической структуры гена позволило ответить на главные вопросы, которые ставила перед собой генетика. Как происходит наследование признаков? В результате чего возникают изменения признаков?