IV. Ионы кальция.
V. Проакцелерин, бета-глобулин.
VI. Ахцелерин. Изъят из классификации, так как является активным V фактором.
VII. Проконвертин, бета-глобулин.
VIII. Антигемофильный глобулин А, бета-глобулин.
IX. Антигемофильный глобулин В. Фактор Кристмаса. Фермент протеаза.
X. Фактор Стюарта-Прауэра.
XI. Плазменный предшественник тромбопластина. Фактор Розенталя. Иногда называется антигемофильным глобулином.
XII. Фактор Хагемана. Протеаза.
XIII. Фибрин – стабилизирующий фактор. Транспептидаза.
Все плазменные прокаогулянты, кроме тромбопластина и ионов кальция синтезируются в печени.
Имеется 12 тромбоцитарных факторов свертывания. Они обозначаются арабскими цифрами. Основные из них:
3. Участвует в образовании плазменной протромбиназы.
4. Антагонист гепарина.
5. Адгезия.
6. Тромбостенин. Вызывает укорочение нитей фибрина.
10. Серотонин. Суживает сосуды, ускоряет свертывание крови.
Выделяют три фазы свертывания крови.
I. Образование активной протромбиназы. Существует две ее формы – тканевая и плазменная. Тканевая образуется при выделении поврежденными тканями тромбопластина и его взаимодействии с IV, V, VII и X плазменными прокаогулянтами. Тромбопластин и VII фактор-проконвертин, активируют Х фактор – Стюарта-Прауэра. После этого Х фактор связывается с V – проакцелерином. Этот комплекс является тканевой протромбиназой. Для этих процессов нужны ионы кальция. Это внешний механизм активации процесса свертывания. Его длительность 15 сек.
Внутренний механизм запускается при разрушении тромбоцитов. Он обеспечивает образование плазменной протромбиназы. В этом процессе участвуют тромбопластин тромбоцитов, IV, V, VIII, IX, X, XI и XII плазменные факторы и 3 тромбоцитарный. Тромбопластин активирует XII фактор Хагемана, который вместе с 3 фактором тромбоцитов переводит в активную форму XI, фактор Розенталя. Активный XI фактор активирует IX – антигемофильный глобулин В. После этого формируется комплекс из активного IX фактора, VIII – антигемофильного глобулина А, 3 тромбоцитарного фактора и ионов кальция. Этот комплекс обеспечивает активацию Х фактора – Стюарта-Прауэра. Комплекс активного Х, V фактора – проахцелерина и 3 фактора тромбоцитов является плазменной протромбиназой. Продолжительность этого процесса 2-10 мин.
II. Переход протромбина в тромбин. Под влиянием протромбиназы и IV фактора =- ионов кальция, протромбин переходит в тромбин. В эту же фазу под действием тромбина происходит необратимая агрегация тромбоцитов.
III. Образование фибрина. Под влиянием тромбина, ионов кальция и XIII – фибринстабилизирующего фактора, фибриноген переходит в фибрин. На первом этапе под действием тромбина фибриноген расщепляется на 4 цепи фибрина мономера. Соединяясь между собой, они формируют волокна фибрина-полимера. После этого XIII фактор, активируемый ионами кальция и тромбином, стимулирует образование прочной сети нитей фибрина. В этой сети задерживаются форменные элементы крови. Возникает тромб. На этом процессе тромбообразование не заканчивается. Под влиянием 6 фактора тромбоцитов – тромбостенина – нити фибрина укорачиваются. Происходит ретракция, т.е. уплотнение тромба. Одновременно сокращающиеся нити фибрина стягивают края раны, что способствует ее заживлению.
При отсутствии какого-либо прокаогулянта свертывание крови нарушается. Например, встречаются врожденные нарушения выработки фибриногена – гипофибринемия, синтеза прокцелерина и проконвертина в печени. При наличии патологического гена в Х-хромосоме нарушается синтез антигемофильного глобулина А и возникает классическая гемофилия. При генетической недостаточности антигемофильного глобулина В, X, XI, XII, XIII факторов также ухудшается свертывание крови. При тромбоцитопении гемокоагуляция также нарушается.
Так как жирорастворимый витамин. К имеет исключительное значение для синтеза протрамбина, VII, IX и Х плазменных факторов, его недостаток в печени ведет к нарушению механизмов свертывания. Это наблюдается при нарушениях функций печени, ухудшении всасывания жиров, угнетения желчеобразования.
Фибринолиз
После заживления стенки сосудов необходимость в тромбе отпадает. Начинается процесс его растворения – фибринолиз. Кроме того, небольшое количество фибриногена постоянно переходит в фибрин. Поэтому фибринолиз необходим и для уравновешивания этого процесса. Фибринолиз – такой же цепной процесс, как и свертывание крови. Он осуществляется ферментной фибринолитической системой. В крови содержится неактивный фермент – плазминоген. Под действием ряда других ферментов он переходит в активную форму – плазмин. Плазмин по составу близок к трипсину. Под влиянием плазмина от фибрина отщепляется белок, который становится растворимым. В последующем они расщепляются пептидазами крови до аминокислот. Активация плазминогена происходит несколькими путями. Во-первых, он может активироваться плазмокиназами эндотелиальных и других клеток. Особенно много плазмокиназ в мышечных клетках матки. Во-вторых, его может активировать ХII фактор Хагемана совместно с ферментом калликреином. В-третьих, переводит его в активную форму фермент урокиназа, образующаяся в почках. При инфицировании организма активатором плазминогена может служить стриптокиназа бактерий. Поэтому инфекция, попавшая в рану, распространяется по сосудистому руслу. В клинике стрептокиназу используют для лечения тромбозов. Фибринолиз продолжается в течении нескольких суток. Для инактивации плазмина в крови находятся его антагонисты – антиплазмины. Их действие направлено на сохранение тромба. Поэтому во внутренних слоях тромба преобладает плазмин, наружных – антиплазмин.
Противосвертывающая система
В здоровом организме не возникает внутрисосудистого свертывания крови, потому что имеется и система противосвертывания. Обе системы находятся в состоянии динамического равновесия. В противосвертывающую систему входят естественные антикоагулянты. Главный из них – антитромбин III. Он обеспечивает 70-80% противосвертывающей способности крови. Антитромбин III тормозит активность тромбина и предотвращает свертывание на II фазе. Свое действие он оказывает через гепарин – полисахарид, который образует комплекс с антитромбином. После связывания антитромбина с гепарином, этот комплекс становится активным антикоагулянтом. Другими компонентами этой системы являются антитромбопластины. Это белки С и S, которые синтезируются в печени. Они инактивируют V и VIII плазменные факторы. В мембране эндотелия сосудов имеется белок тромбомодулин, который активирует белок С.. Благодаря этому предупреждается возникновение тромбозов. При недостатке этого белка С в крови возникает наклонность к тромбообразованию. Кроме того, имеются антагонисты антигемофильных глобулинов А и В.
Факторы, влияющие на свертывание крови
Нагревание крови ускоряет ферментативный процесс свертывания, охлаждение замедляет его. При механических воздействиях, например встряхивании флакона с кровью, свертывание ускоряется из-за разрушения тромбоцитов. Так как ионы кальция участвуют во всех фазах свертывания крови, увеличение их концентрации ускоряет, уменьшение замедляет его. Соли лимонной кислоты – цитраты связывают кальций и предупреждают свертывание. Поэтому их используют в качестве консерваторов крови.
Для лечения заболеваний, при которых повышена свертываемость крови, используют фармакологические антикоагулянты. Их делят на антикоагулянты прямого и непрямого действия. К первым относятся гепарины, а также белок слюны медицинских пиявок – гирудин. Они непосредственно тормозят фазы свертывания крови. К антикоагулянтам непрямого действия относятся производные кумаровой кислоты – дикумароин, неодикумарин и др. Они тормозят синтез факторов свертывания в печени. Антикоагулянты применяются при опасности внутрисосудистого свертывания. Например, при тромбозах сосудов мозга, сердца, легких и т.д. Естественными антикоагулянтами являются и компоненты противосвертывающей системы – гепарин, антитромбин III, антитромбопластины, антагонисты антигемофильных глобулинов А и В.
ГРУППЫ КРОВИ. РЕЗУС-ФАКТОР. ПЕРЕЛИВАНИЕ КРОВИ
В средние века неоднократно делались попытки переливания крови от животных человеку и от человека человеку. Однако практически все они заканчивались трагически. Первое удачное переливание человеческой крови пострадавшему произвел в 1667 году врач Дени. Причины тяжелых осложнений, возникающих при гемотрансфузиях, первым установил в 1901 году Карл Ландштейнер. Он смешивал капли крови различных людей и обнаружил, что в ряде случаев происходит склеивание эритроцитов – агглютинация и их последующий гемолиз. На основании своих опытов Ландштейнер сделал вывод, что в эритроцитах имеются белки-агглютиногены, способствующие их склеиванию. Он вывел 2 агглютиногена А (9 видов) и В (4 вида). На основе их отсутствия или наличия в эритроцитах разделил кровь на I, II и IIIгруппы. В 1903 Штурли обнаружил IV группу. Ландштейнер и Ямский установили, что эритроциты содержат агглютиногены А и В, а плазма крови – агглютинины альфа и бета. В крови никогда одновременно не присутствуют агглютиноген А и агглютинин альфа, а также агглютиноген В и агглютинин бета.
Свойствами агглютиногена обладает мембранный гликопротеид эритроцитов – гликофорин. Агглютинины являются иммуноглобулинами М и G, т.е. гамма-глобулины.
Первоначально новорожденный имеет лишь агглютиногены на мембране эритроцитов. Однако затем компоненты пищи, вещества, вырабатываемые микрофлорой кишечника, способствуют синтезу тех агглютининов, антигенов на которые в эритроцитах данного человека нет.
Группы крови системы АВ0 обозначаются римскими цифрами и дублирующим названием антигена:
I(0) – на эритроците агглютиногенов нет, в плазме агглютинины альфа и бета.