Мембранные потенциалы и их ионная природа
Содержание
1. Мембранные потенциалы и их ионная природа
1.1 Потенциал покоя, уравнение Нернста
1.2 Стационарный потенциал Гольдмана - Ходжкина
1.3 Уравнение электродиффузии ионов через мембрану в приближении однородного поля
1.4 Механизм генерации и распространения потенциала действия
Список использованных источников
1. Мембранные потенциалы и их ионная природа
Мембранная теория биопотенциалов была выдвинута еще в 1902 году Бернштейном. Но только в 50-х годах эта теория была по-настоящему развита и экспериментально обоснована Ходжкиным, которому принадлежат основные идеи и теории о роли ионных градиентов в возникновении биопотенциалов и о механизме распределения ионов между клеткой и средой.
Сущность этой теории заключается в том, что потенциал покоя и потенциал действия являются по своей природе мембранными потенциалами, обусловленными полупроницаемыми свойствами клеточной мембраны и неравномерным распределением ионов между клеткой и средой, которое поддерживается механизмами активного переноса, локализованными в самой мембране.
1.1 Потенциал покоя, уравнение Нернста
Между внутренней и наружной поверхностями клеточной мембраны всегда существует разность электрических потенциалов. Эта разность потенциалов, измеренная в состоянии физиологического покоя клетки, называется потенциалом покоя.
Причиной возникновения потенциалов клеток как в покое, так и при возбуждении является неравномерное распределение ионов калия и натрия между содержимым клеток и окружающей средой.
Концентрация ионов калия внутри клеток в 20 - 40 раз превышает их содержание в окружающей клетку жидкости. Напротив, концентрация натрия в межклеточной жидкости в 10 - 20 раз выше, чем внутри клеток.
Такое неравномерное распределение ионов обусловлено активным переносом ионов - работой натрий-калиевого насоса.
Как было установлено, возникновение потенциала покоя обусловлено, в основном, наличием концентрационного градиента ионов калия и неодинаковой проницаемостью клеточных мембран для различных ионов.
Согласно теории Ходжкина, Хаксли, Катца, клеточная мембрана в состоянии покоя проницаема, в основном, только для ионов калия.
Ионы калия диффундируют по концентрационному градиенту через клеточную мембрану в окружающую жидкость; анионы не могут проникать через мембрану и остаются на ее внутренней стороне.
Так как ионы калия имеют положительный заряд, а анионы, остающиеся на внутренней поверхности мембраны, - отрицательный, то внешняя поверхность мембраны при этом заряжается положительно, а внутренняя - отрицательно.
Понятно, что диффузия продолжается только до того момента, пока не установится равновесие между силами, возникающего электрического поля и силами диффузии.
Если принять, что потенциал покоя определяется диффузией только ионов калия из цитоплазмы наружу, то его величина E может быть найдена из уравнения Нернста:
мембранный потенциал клетка электродиффузия
где [K]i и [K]e - активность ионов калия внутри и снаружи клетки; F - число Фародея;T - абсолютная температура; E - изменение потенциала; R - газовая константа.
1.2 Стационарный потенциал Гольдмана - Ходжкина
Для количественного описания потенциала в условиях проницаемости мембраны для нескольких ионов Ходжкин и Катц использовали представление о том, что потенциал покоя на равновесный, а стационарный по своей природе, то есть он отражает состояние системы, когда через мембрану непрерывно идут встречные потоки ионов K+, Na+, Cl- и других.
Суммарный поток положительно заряженных частиц через мембраны равен сумме потоков одновалентных катионов минус сумма потоков одновалентных анионов.
Основной вклад в суммарный поток зарядов практически во всех клетках вносят ионы Na+, K+ и Cl-, поэтому
Наличие суммарного потока приведет к изменению потенциала на мембране; скорость этого изменения зависит от емкости мембраны. Связь между плотностью тока j
, удельной емкостью С и потенциалом j (В) известна из курса физики: ,де
- скорость изменения потенциала . При этом величина плотности тока " j " связана с плотностью потока одновалентных катионов Ф , соотношением j = Ф × F, где F - число Фарадея.Уравнение потенциала для трех ионов имеет следующий вид:
(P - проницаемость)
Это уравнение называется уравнением стационарного потенциала Гольдмана - Ходжкина - Катца.
1.3 Уравнение электродиффузии ионов через мембрану в приближении однородного поля
Рассмотрим перенос заряженных частиц (ионов). В отсутствие градиента концентрации главная движущая сила при переносе ионов - электрическое поле. Если частица (ион) в водном растворе или внутри мембраны находится во внешнем электрическом поле с градиентом потенциала
, то она будет двигаться. Соблюдение Ома для таких систем означает, что между скоростью движения частицы "u" и действующей силой имеется линейная зависимость:где q - заряд частицы, b - подвижность носителя заряда (иона). Переходя к плотности тока j = qnu, где n - число частиц в единице объема, получаем в направлении оси "X":
.Поток частиц "Ф" равен потоку электричества "j", деленному на заряд каждой частицы "q", то есть
(1)Выразим "Ф" как функцию градиента термодинамического потенциала, так как q = ze (e - заряд электрона), таким образом, согласно E = z F(j2 - j1 ), где E - энергия электрического поля, F - число Фарадея, z - заряд иона.
F = NA e, E = z e NA(j2 - j1) = qNA(j2 - j1),
тогда
, (G - свободная энергия), (2)где NA - число Авогардо.
Сопоставив (1) и (2), получаем:
где
- молярная концентрация частиц (Кмоль/м ).Это уравнение соблюдается и для явлений диффузии, и для электрофореза в однородном растворителе.
Теорелл (1954 г.) обобщил это выражение для случая, когда изменяется не только концентрация вещества "с" и потенциал "j", но и химическое сродство иона к окружающей среде "m0" (в частности, к растворителю). Тогда уравнение потока принимает следующий вид (уравнение Теорелла):
(3)где
- электрохимический потенциал. То есть поток равен произведению концентрации носителя на его подвижность и на градиент его электрохимического потенциала. Знак "-" указывает на то, что поток направлен в сторону убывания .Для однородной среды
и учитывая значение , подставленное в (3) получается электродиффузное уравнение Нернста - Планка:где R - универсальная газовая постоянная, T - абсолютная температура.
1.4 Механизм генерации и распространения потенциала действия
Все клетки возбудимых тканей при действии различных раздражителей достаточной силы способны переходить в состояние возбуждения. Обязательным признаком возбуждения является изменение электрического состояния клеточной мембраны.
Общее изменение разности потенциалов между клеткой и средой, происходящее при пороговом и сверхпороговом возбуждении клеток, называется потенциалом действия.
Потенциалы действия обеспечивают проведение возбуждения по нервным волокнам и инициируют процессы сокращения мышечных и секреции железистых клеток.
На основе обобщения большого экспериментального материала было установлено, что потенциалы действия возникают в результате избыточного по сравнению с покоем диффузии ионов натрия из окружающей жидкости внутрь клетки.
Формирование потенциала действия обусловлено двумя ионными потоками через мембрану: поток ионов натрия внутрь клетки приводит к перезарядке мембраны, а противоположно направленный поток ионов калия обусловливает восстановление исходного потенциала покоя.