Смекни!
smekni.com

Концепции современного естествознания (стр. 3 из 18)

Общая теория относительности и её экспериментальные доказательства

Общая теория относительности раскрывает природу закона всемирного тяготения.Допущение:Основное допущение ОТО очень простое и называется принципом эквивалентности. На кухонном языке оно звучит приблизительно так: если мы не можем отличить силу, возникающую в результате ускорения (например, центробежного) от силы, порождённой гравитационным полем – то это одно и то же. В более формализованном виде принцип эквивалентности выглядит так: гравитационная масса эквивалентна инерционной массе. Что известно о массе? Это понятие входит в два уравнения Ньютона: F = am и F= G·m1m2/r2, - второй закон механики и закон всемирного тяготения. Однако почему мы решили, что масса, входящая в первое уравнение и масса, входящая во второе – это одно и то же? Ведь они ничем не связаны между собой. Будем называть массу первого уравнения инерционной (mi), а из второго - гравитационной (mg). Давайте считать, что это одно и то же и посмотрим, что получится.Пропустив математические выкладки получим следующее.

Следствие:Наша Вселенная четырёхмерна («четырёхмерный пространственно-временной континуум»). Любая масса искривляет пространство-время, и наоборот, степень искривления пространства-времени материальным объектом определяет его массу. Трёхмерное тело, движущееся в искривленном четырёхмерном пространстве, испытывает угловое ускорение, которое наблюдатель воспринимает как тяготение.В любой популярной книжке по ОТО приводится одна и та же аналогия. Представим себе двумерного человечка, живущего на бесконечно тонкой плёнке. Он во всём не хуже нас, трёхмерных и у них на плёнке все такие. Представим, что этот человечек спешит из точки А в точку В. А теперь продавим эту плёнку пальцем. Человечек в недоумении: он много раз ходил этим маршрутом и проходил его за время, значительно более короткое, чем сейчас. Об удлинении маршрута он не подозревает: добавочная длина возникает в третьем измерении, опытных знаний о котором он не имеет. Он видит, что изменилась скорость его движения, а там, где есть изменение скорости, там есть ускорение, а там, где ускорение – сила. Эту силу, тормозящую его движение к точке В, он воспринимает как тяготение.Также и мы, трёхмерные, движемся по поверхности огромного четырёхмерного пузыря, испещрённого многочисленными выбоинами и колдобинами – посторонними массами.Это довольно грубая аналогия, но, по крайней мере, она наглядна. Мы и дальше ей будем пользоваться, но добавим физичности.

Во-первых, никакого дополнительного скрытого пространства нет. Физическое тело, перемещаясь в пространстве, перемещается также и во времени, в трёх пространственных измерениях плюс одном временном. Мирный обыватель очень чётко понимает различия между пространством и временем. Однако с появлением теории относительности физик-теоретик получает волшебную палочку – фундаментальную постоянную с, скорость света. Теперь, с помощью этой мировой постоянной можно время выразить через пространственные единицы, например, секунду можно задать как 300 000 км, делённые на с – скорость света, или, сходным образом, пространство через время. Наш пространственно-временной континуум – это три симметричные, сходные, различаемые только по произволу наблюдателя пространственные координаты плюс одна, (временная) особенная. Но если каждую из четырёх переменных на что-то умножить и одинаково преобразовать, то можно получить четыре совершенно неразличимые оси, каждая из которых будет в равной степени и временной и пространственной. Этот фокус называется преобразованиями Минковского. Итак, с помощью математических преобразований и палочки-выручалочки с в теоретической физике можно перейти от несимметричных привычных нам пространственно-временных координат к симметричным координатам Минковского и обратно. Нового, добавочного четвёртого измерения нет, есть новая форма представления известных уже понятий. Правда, время отличается от пространства ещё одним качеством: во времени стоять нельзя. В новых пространственно-временных координатах неподвижных объектов нет.Но если четырёхмерное пространство-время – это то, в чём мы существуем, и ничего нового, скрытого, добавочного нет, почему мы не видим его искривления массой? Потому, что оно исключительно мало. Допустим, с обрыва падает камень. За секунду он пролетит 4,9 м. Если мы выразим секунду в единицах длины (зачем – для того, чтобы отразить путь и время в некотором едином масштабе), то это составит 300 000 км пути света, т.е. при движении по одной оси на 300 000 км смещение по другой составит 4.9 м. При преобразовании координат в пространстве Минковского различия не сгладятся. И в этом пространстве-времени приходится всегда двигаться, а поскольку оно более или менее искривлено - чувствовать перегрузки на виражах.Трёхмерное геометрическое пространство, в котором, по обычному представлению мы существуем, описывается геометрией Эвклида. Эвклидова геометрия – частный случай геометрии Римана. Есть другие геометрии и у физиков возникает вопрос – какова истинная геометрия нашего мира? Так же как при обычных, привычных для нашего восприятия скоростях сокращения длин и времени неуловимо малы и неотличимы от постоянных величин механики Ньютона, так же для малых масс отличия геометрии нашего обывательского мира от прямолинейной геометрии Эвклида исчезающее малы.

Однако допущение, что мы живём именно в эвклидово пространстве – слишком сильное допущение и Эйнштейн от него отказывается, допуская существование «менее правильного» мира.Проверка: Ещё в первой редакции ОТО (1915 г.) Эйнштейн предложил два критерия проверки своей гипотезы: смещение орбиты Меркурия и искривление световых лучей в поле тяготения Солнца. Меркурий, ближайшая к Солнцу планета), находясь в нижней точке своей орбиты (перигее), оказывается в зоне наиболее искривлённого тяготением Солнца пространства-времени. Для земного наблюдателя время на нём замедляется. Это приводит к тому, что следующий виток орбиты происходит с небольшим поворотом длинного радиуса эллипса. За столетие это смещение становится величиной, которую можно зарегистрировать. Этот феномен был известен и до Эйнштейна – его открыл Леверье в середине XIX в. Расчёты по формулам ОТО совпали с наблюдаемыми данными. Эйнштейн предсказывал, что во время полного затмения Солнца звёзды, находящиеся вблизи солнечной короны, должны показаться сместившимися относительно своих исходных координат. Не то, чтобы во время затмения тяготение иное – без него звёзд не видно. Луч света от звезды, проходя вблизи массивного Солнца, движется в искривлённом им пространстве и это отклонение луча будет приводить к «смещению» звёзд.

Нестационарная Вселенная Фридмана

Вселенная Эйнштейна была замкнутой гиперсферой – безграничной, но конечной. Безграничной в том смысле, что путешествующий в ней луч света никогда не упрётся в препятствие, но конечной, имеющей определённый размер.Но в такой Вселенной возникает общее тяготение, стремящееся собрать все массы в единую точку – проблема, которую осознал ещё Ньютон. Чтобы все массы не упали в общую кучу, Эйнштейн ввёл космологическую постоянную, космологический член Λ(лямбда большое). Кардинальные изменения в неё внёс Александр Фридман – советский метеоролог. Этот странный любитель работал в области космологии в 1922-1924 гг. Он указал Эйнштейну на то, что его Λ-член – совершенно лишняя конструкция. Эйнштейн вынужден был признать свою ошибку - Λ-член был типичной логической конструкцией ad hoc. Если Вселенной угодно падать внутрь самой себя – пусть падает. Так появилась концепция нестационарной Вселенной.Фридман рассмотрел несколько моделей нестационарной Вселенной. Модель пульсирующей Вселенной предполагает, что Вселенная равномерно расширяется под воздействием какого-то внутреннего импульса, но силы тяготения постоянно тормозят это расширение и, в конце концов, Вселенная станет сжиматься до приобретения нового импульса. Так камень, брошенный вверх, движется, постоянно теряя скорость, и начинает падать вниз.Другая модель предполагает, что несмотря на постоянное торможение гравитацией, Вселенная будет расширяться вечно. Так камень, брошенный со скоростью, превышающей вторую космическую, будет вечно терять скорость под влиянием тяготения Земли, но будет и вечно от неё удаляться.Фридман скончался от воспаления лёгких в возрасте 37 лет в 1925 г., за три года до того, как американец Эдвин Хаббл обнаружил, что Вселенная расширяется - звёзды удаляются от нас тем быстрее, чем дальше они находятся, по закону Хаббла – V = HR, где R – расстояние до звезды, V скорость удаления звезды, H – постоянная Хаббла.

Эффект Доплера, красное смещение и доказательства расширения Вселенной

Как можно измерить расстояние до звезды и скорость её удаления? Хаббл нашёл особый класс звёзд – цефеиды. Это огромные пульсирующие звёзды, такие большие, что их можно различать даже в ближайших галактиках (доказательство факта наличия других галактик также принадлежит Хабблу). Все цефеиды светят приблизительно одинаково – как по яркости, так и по спектру излучения. Зная это, можно определить расстояние до цефеиды – чем она тусклее, тем дальше (интенсивность света падает пропорционально квадрату расстояния до источника). Чем быстрее удаляется звезда, тем более длинными кажутся наблюдателю электромагнитные волны, которые она излучает. Этот феномен известен также как эффект Доплера, который справедлив и для звуковых волн – визг нападающего должен быть выше, чем рёв убегающего.Самые длинные световые волны, которые различает глаз человека – красные, следовательно, чем быстрее улетает звезда, тем её свет становится краснее. Итак, по интенсивности блеска цефеид определяем расстояние до звезды, по красному смещению - её скорость и, оценив разлёт многих звёзд, сможем проследить общую закономерность расширения Вселенной.Уравнение Хаббла преподносит нам удивительный гносеологический сюрприз. Дело в том, что скорость разлёта звёзд не может превышать скорости света – а, следовательно, ограничено и расстояние до звёзд – если V=c, то R=c/H. Последнее выражение определяет так называемый ”горизонт видимости”. Сюрприз заключается в том, что познать можно только участок Вселенной, ограниченный ”горизонтом видимости”. Сама Вселенная или Метагалактика, значительно больше. Есть участки Вселенной, о которых мы никогда ничего не узнаем – световой или любой другой сигнал никогда уже не придёт оттуда, скорость разлёта участков Метагалактики не позволит ему догнать Землю.Есть нечто, о чем невозможно знать ничего, кроме того, что оно существует.