Смекни!
smekni.com

Биология с основами экологии (стр. 1 из 3)

1.Биосинтез белка.

2.Взаимодействие организмов в экосистемах.

3.Биоритмы и биологические часы. Каково их биологическое значение в жизни организмов?

4.Проанализируйте эволюцию нервной системы животных от низших до высших многоклеточных".


Введение

Одной из задач современной биологии и ее новейших разделов – молекулярной биологии, биоорганической химии, физико-химической биологии – является расшифровка механизмов синтеза молекулы белка, содержащей сотни, а иногда и тысячи остатков аминокислот. Механизм синтеза должен обладать точной кодирующей системой, которая автоматически программирует включение каждого аминокислотного остатка в определенное место полипептидной цепи Кодирующая система определяет первичную структуру, а вторичная и третичная структуры белковой молекулы определяются физико-химическими свойствами и химическим строением аминокислот.

Биосинтез белка можно разделить на стадии транскрипции, процессинга и трансляции. Во время транскрипции происходит считывание генетической информации, зашифрованной в молекулах ДНК, и запись этой информации в молекулы мРНК. В ходе ряда последовательных стадий процессинга из мРНК удаляются некоторые фрагменты, ненужные в последующих стадиях, и происходит редактирование нуклеотидных последовательностей. После транспортировки кода из ядра к рибосомам происходит собственно синтез белковых молекул, путем присоединения отдельных аминокислотных остатков к растущей полипептидной цепи.


1. Биосинтез белка

Биосинтез белка — сложный многостадийный процесс синтеза полипептидной цепи из аминокислотных остатков, происходящий на рибосомах клеток живых организмов с участием молекул иРНК и тРНК.

Транскрипция

Транскрипцией называется процесс считывания генетического кода с молекулы ДНК. При этом на одной из цепочек ДНК синтезируется одноцепочечная молекула информационной или матричной РНК (мРНК), согласно принципу комплементарности. Последовательность из трех нуклеотидов в мРНК, соответствующая последовательности в ДНК, кодирующая определенную аминокислоту, называется кодоном. Основную роль в транскрипции играет фермент РНК-полимераза.

Процессинг

Между транскрипцией и трансляцией молекула мРНК претерпевает ряд последовательных редактирований, которые обеспечивают созревание функционирующей матрицы для синтеза полипротеиновой цепочки. С появлением процессинга в эукариотической клетке стало возможено комбинирование экзонов гена для получения большего разнообразия белков, кодируемым единой последовательностью нуклеотидов ДНК.

После полиаденилирования мРНК подвергается удалению интронов. Процесс катализируется сплайсосомой и называется сплайсингом.

Трансляция

Трансляция заключается в синтезе полипептидной цепи в соответствии с информацией, закодированной в матричной РНК. Аминокислотная последовательность выстраивается при помощи транспортных РНК (тРНК), которые образуют с аминокислотами комплексы — аминоацил-тРНК. Каждой аминокислоте соответствует своя тРНК, имеющая соответствуюищий антокодон, «подходящий» к кодону мРНК. Во время трансляции рибосома движется вдоль мРНК, по мере этого наращивается полипептидная цепь. Энергией биосинотез белка обеспечивается за счет АТФ.

Готовая белковая молекула затем отщепляется от рибосомы и транспортируется в нужное место клетки. Для достижения своего активного состояния некоторые белки требуют дополнительной посттрансляционной модификации.

2. Взаимодействие организма в экосистемах

Основополагающим объектом изучения экологии является взаимодействие пяти уровней организации материи: живые организмы, популяции, сообщества, экосистемы и экосфера.

Живой организм – это любая форма жизнедеятельности.

Популяция – это группа организмов одного вида, проживающих в определенном районе (местообитании).

Примерами популяций являются все окуни в пруду, белки в лесах Московской области, население в отдельной стране или население Земли в целом.

Вид – это совокупность популяций особей, представители которых фактически или потенциально скрещиваются друг с другом в естественных условиях.

Каждый организм или популяция имеет свое местообитание: местность или тип местности, где они проживают. Когда несколько популяций различных видов живых организмов живут в одном месте и взаимодействуют друг с другом, они создают так называемое сообщество, или биологическое сообщество. Таким образом, сообщество - комплекс взаимосвязанных популяций разных видов, обитающих на определенной территории с более или менее однородными условиями существования.

Экосистема – это совокупность сообществ, взаимодействующих с химическими и физическими факторами, создающими неживую окружающую среду. Другими словами, экосистема - это система, образуемая биотическим сообществом и абиотической средой.

Переходная область между двумя смежными экосистемами называется экотон .

Главные экосистемы суши, такие, как леса, степи и пустыни, называются наземными экосистемами, или биомами. Экосистемы гидросферы называются водными экосистемами.

Примерами таких экосистем являются пруды, озера, реки, открытый океан, коралловые рифы и т.п. Все экосистемы Земли составляют экосферу.

Экосфера – совокупность живых и неживых организмов (биосфера), взаимодействующих друг с другом и со своей неживой средой обитания (энергией и химическими веществами) в планетарном масштабе.

I. Абиотические компоненты экосистем.

Экосистема состоит из различных живых и неживых компонентов. Неживые, или абиотические, компоненты экосистемы включают различные физические и химические факторы. К важным физическим факторам относятся:

a. солнечный свет;

b. тень;

c. испарение;

d. ветер;

e. температура;

f. водные течения.

Главными химическими факторами являются питательные элементы и их соединения в атмосфере, гидросфере и земной коре, необходимые в больших или малых количествах для существования, роста и размножения организмов.

Наиболее важные для жизни химические элементы, необходимые в больших количествах, называются макроэлементами (С, О, Н, N, P, S, Ca, Mg, K, Na).

Элементы, необходимые для жизни в малых или следовых количествах – микроэлементы (Fe, Cu, Zn, Cl).

II. Биотические компоненты экосистем.

Основные типы организмов, которые формируют живые, или биотические, компоненты экосистемы, принято подразделять по преобладающему способу питания на продуцентов, консументов и редуцентов.

Продуценты - это организмы, производящие органические соединения из неорганических. Продуценты (в большинстве своем зеленые растения) создают органические вещества в процессе фотосинтеза или хемосинтеза. Эти органические вещества используются продуцентами как источник энергии и как строительный материал для клеток и тканей организма.

Фотосинтез может быть представлен следующим образом:

Хемосинтез – преобразование неорганических соединений в питательные органические вещества в отсутствие солнечного света, за счет энергии химических реакций.

Только продуценты способны сами производить для себя пищу. Более того, они непосредственно или косвенно обеспечивают питательными элементами консументов и редуцентов.

По типу питания все продуценты являются автотрофами - сами производят органические вещества из неорганических. Консументы и редуценты по типу питания являются гетеротрофами - питаются органическим веществом, произведенным другими живыми организмами.

Консументы – организмы, получающие питательные вещества и необходимую энергию, питаясь живыми организмами - продуцентами или другими консументами.

Редуценты – организмы, получающие питательные вещества и необходимую энергию питаясь останками мертвых организмов (животных, растений).

В зависимости от источников питания консументы подразделяются на три основных класса:

- фитофаги (растительноядные) – это консументы 1-го порядка, питающиеся исключительно живыми растениями. Например, птицы едят семена, почки и листву.

- хищники (плотоядные) – консументы 2-го порядка, которые питаются исключительно растительноядными животными (фитофагами), а также консументы 3-го порядка, питающиеся только плотоядными животными.

- эврифаги (всеядные), которые могут поедать как растительную, так и животную пищу. Примерами являются свиньи, крысы, лисы, тараканы, а также человек.

Существует два основных класса редуцентов:

1. Детритофаги – напрямую потребляют мертвые организмы или органические остатки. (пример: шакалы, грифы, дождевые черви).

2. Деструкторы – разлагают мертвую органическую материю на простые неорганические соединения (процесс гниения и разложения). Примером могут служить грибы и микроскопические одноклеточные бактерии.

Потоки энергии в экосистемах.

Химическая энергия, накопленная в глюкозе и других углеводородах, используется продуцентами, консументами и редуцентами для поддержания жизнедеятельности, что является частью одностороннего движения энергии через организмы в экосистеме.

Преобразование органических соединений в энергию происходит за счет клеточного дыхания в митохондриях клетки:

Получение органических соединений происходит в основном за счет фотосинтеза :

3. Биоритмы и биологические часы. Каково их биологическое значение в жизни организмов?

Изучением ритмов активности и пассивности, протекающих в нашем организме, занимается особая наука – биоритмология. Согласно этой науке, большинство процессов, происходящих в организме, синхронизированы с периодическими солнечно-лунно-земными, а также космическими влияниями. И это неудивительно, ведь любая живая система, в том числе и человек, находится в состоянии обмена информацией, энергией и веществом с окружающей средой. Если этот обмен (на любом уровне – информационном, энергетическом, материальном) нарушается, то это отрицательно сказывается на развитии и жизнедеятельности организма.