Смекни!
smekni.com

Происхождение жизни на Земле (стр. 3 из 6)

Таким образом, основные гипотезы о происхождении жизни на Земле можно разделить на 3 группы:

1) религиозная гипотеза о "божественном" происхождения жизни;

2) "панспермия" - жизнь возникла в космосе и затем была занесена на Землю;

3) жизнь возникла на Земле в результате естественных процессов.

Рассмотрим более подробно закономерности и химические особенности происхождения жизни на земле.

Возникновение и развитие жизни и разума на Земле подготовлено всем ходом эволюции неживой материи Метагалактики. Закономерность и неизбежность возникновения и развития жизни и разума обусловлена одним из важнейших свойств Метагалактики - "антропным принципом". Существование и развитие объектов Метагалактики обусловлено внутренними динамическими процессами. Все возникающие объекты, от космических пылинок и туманностей, бактерий и людей, звезд, галактик и, по-видимому, всей Метагалактики в целом, являются открытыми неравновесными системами, обменивающимися с окружающей средой веществом и энергией. В ходе эволюции возникает способность к воспроизведению подобных объектов и усвоению ими благоприобретенных признаков и свойств. С увеличением сложности структур упорядоченных систем возрастает их способность к накоплению, запоминанию и хранению информации. Информационная эволюция ускоряет темпы самоорганизации материи и идет в направлении уменьшения возможных наборов элементов, определяющих структуру и функционирование сложных систем. Наборы с наименьшим числом элементов легче восстанавливаются, передаются и тиражируются. Для атомов число возможных комбинаций протонов и нейтронов в атомных ядрах равно числу изотопов (свыше 1500). Для молекул возможное число наборов атомов равно количеству элементов таблицы Менделеева (около 100). Для полимеров в растворах - числу 5 пространственных конфигураций. Для живых организмов - количеству нуклеотидов в ДНК и РНК (4). С увеличением сложности структур возрастает зависимость их существования и развития от физических и химических свойств среды и неизменности внешних условий.

Например, температурные границы существования объектов:

- атомов - от 0,5–1 К до 105 К (температура ионизации);

- молекул - от 2-3 К до 104 К (температура диссоциации);

- твердотельных кластеров (объектов, содержащих минимальное число атомов для проявления всех макроскопических свойств данного вещества) - от 10-15К до 5× 103К;

- микроорганизмов - от 100 К до 700 К;

- человека - от 308 К до 312 К [7. С. 142].

Вышесказанное определяет условия, необходимые и достаточные для проявления и развития жизни, возможное время ее возникновения в Метагалактике и на Земле, основные темпы и направления эволюции живых организмов. В раннюю эпоху существования Метагалактики вплоть до образования галактик, жизнь не могла существовать из-за абсолютно неподходящих внешних условий. Не могла она возникнуть вблизи звезд I поколения, которые, скорее всего, не имеют планетных систем из-за 10-40-кратного дефицита тяжелых химических элементов.

Для образования космических тел с современным химическим составом и соотношением изотопов тяжелых элементов их синтез должен был произойти за 4-6 миллиардов лет до образования Солнечной системы, т.е. не позже 9-11 миллиардов лет назад. Образование тяжелых элементов было особенно интенсивным в период формирования основных галактических структур; в нашем районе Галактики период интенсивного звездообразования закончился к моменту образования Солнечной системы.

Химические условия возникновения и развития жизни определяются составом ее молекулярных основ. Нуклеиновые кислоты ДНК и РНК построены из нуклеотидов, состоящих в свою очередь из сахара, азотистых оснований и фосфата; белки состоят из аминокислот. Все химическое разнообразие жизни на Земле исчерпывается 28 веществами: 20 видов аминокислот, 5 оснований, 2 углеводов и 1 фосфата, элементарный химический состав которых состоит из водорода (37,5%), углерода (29,8%), кислорода (18,3%), азота (11,3%), фосфора (3,1%). Водород - самый распространенный химический элемент, углерод, кислород и азот - самые распространенные из тяжелых химических элементов, способные образовывать огромное число сложных и относительно стабильных молекул (благодаря наличию химически инертных соединений углерода). Кислород - активный окислитель, его соединение с водородом Н2О, вода - широко распространенный универсальный биологический химический растворитель, остающийся в жидком состоянии в широком диапазоне температур, обладающий высокой диэлектрической проницаемостью и теплоемкостью.

Химические условия существования жизни налагают ряд дополнительных требований к физическим характеристикам объектов, на которых они могли бы реализоваться [7. С. 135].

Химический состав объекта должен допускать наличие гидросферы и атмосферы приемлемого состава, состоящей из газов, способствующих возникновению и развитию живых организмов и поддерживающих необходимый энергетический режим (температуры и энергетической освещенности) без резких колебаний вышеупомянутых условий и давления. Например, углекислый газ в атмосфере Земли не только основное сырье для фотосинтеза, но и важнейший инструмент для поддержания температуры атмосферы с оптимальной концентрацией 0,03-0,04%. Масса объекта должна обеспечивать силу тяжести, достаточную для удержания постоянной атмосферы достаточной плотности у поверхности космического тела без перехода атмосферных газов в другие агрегатные состояния.

Орбита космического тела должна лежать в пределах "зоны жизни" данной планетной системы, обеспечивающей достаточную энергетическую освещенность поверхности в приемлемом диапазоне длин волн и иметь малый эксцентриситет во избежание резких колебаний внешних условий на поверхности тела. Объект должен вращаться вокруг своей оси со скоростью, достаточной для установления атмосферной и гидросферной циркуляции и некоторого усреднения физических условий на поверхности.

Всем вышеперечисленным условиям отвечают планетные тела (планетоиды и планеты земной группы) массой от 0,1 до 10 МÅ, входящие в состав планетных систем одиночных, медленновращающихся, обладающих постоянством светимости звезд главной последовательности II и последующих поколений спектральных классов F5-К5. Число планетных тел Галактики с благоприятными условиями для существования жизни определяется формулой:

,

где N* - общее число звезд Галактики (около 2× 109);

fn - доля звезд, имеющих планетные системы (все одиночные медленновращающиеся звезды, от 20 до60 % звезд);

ne - доля звезд, вблизи которых могут быть благоприятные для жизни условия (для звезд классов F5-К5 около 0,01-0,02).

Если в каждой из вышеуказанных планетных систем "обитаема" лишь одна планета, то в настоящее время в Галактике может быть от 40 до 240 миллионов планет, на которых существует жизнь. Даже если по каким-либо причинам вероятность возникновения жизни в сотни и тысячи раз меньше, в Галактике сейчас должны быть сотни тысяч и миллионы населенных планетных тел. Для Галактики это очень маленькая величина. Так, на расстоянии до 5 парсек (16,3 св. года) от Солнца насчитывается 53 звезды, из которых лишь 3 - e Эридана, t Кита и e Индейца - удовлетворяют вышеупомянутым условиям; однако у e Эридана планетная система находится в стадии формирования.

В настоящее время в научных лабораториях подробно исследованы и воспроизведены первые этапы эволюции от "неживой" к "живой" материи:

1. Эволюция малых молекул (CH4, H2O, NH3, CO и т.д.).

2. Образование полимеров.

3. Возникновение каталитических функций.

Ведутся исследования последующего этапа эволюции - самосборки молекул-гиперциклов, возникновению биологических мономеров (аминокислот, азотистых оснований и т.д.) и биополимеров, накоплены определенные сведения по следующему этапу - возникновению мембран и доклеточной организации. К сожалению, весьма далеки от окончательного понимания два важнейших заключительных этапа превращения "неживого" в "живое" - возникновение механизма наследственности и возникновение клетки. Основой жизни в Метагалактике могут являться:

1) Широко распространенные химические элементы IV-VI групп таблицы Менделеева (углерод, кремний, кислород, фтор, азот, фосфор, сера и т.д.), способные образовывать сложные молекулярные цепочки, выполняющие функции органических молекул.

2) Химические соединения (вода H2O, аммиак NH3, смесь воды с аммиаком, сероводород H2S, синильная кислота HCN, фтористый водород HF и т.д.), обладающие свойством быть одновременно кислотой и основанием: они способны стать биологическими растворителями. Водородная связь определяет структуру белков, нуклеиновых кислот и других органических соединений и их возможных аналогов [8. С. 36].

"Аммиачная" жизнь является второй по вероятности распространенности после земной, основанной на соединениях углерода и воде. Аммиак обладает достаточно высокими теплотой плавления, парообразования и теплоемкостью, остается жидким в диапазоне температур от –77,7њ С до –33,4њ С при нормальном давлении; при возрастании давления температура кипения увеличивается (до +132,4њ С при р = 112 атм.). Океаны и моря из жидкого аммиака (или смеси аммиака с водой и гидроксиламином NH2OH) будут так же эффективно смягчать колебания температуры, как гидросфера Земли. Аммиак обладает некоторыми биологическими преимуществами перед водой (большей текучестью, способностью растворять органические соединения и т.д.). "Аммиачная" жизнь может процветать на относительно холодных планетах земной группы и плаентоидах с плотными атмосферами.