Смекни!
smekni.com

Вплив факторів навколишнього середовища на популяції гідробіонтів (стр. 2 из 4)

Великий вплив температура води має на живлення травлення, білковий, жировий і вуглеводний обмін риб. При підвищеній температурі води активність живлення і травлення зростає. Так, у дволітків коропа час перебування їжі в кишечнику скорочується з 12 до 3 год. при підвищенні температури від 22 до 31°С Максимальні прирости спостерігаються при температурі 25…27°С, при цьому в кишечнику їжа знаходиться 5…8 год. Зміна температури впливає на напрям білкового обміну і міняє співвідношення частин засвоєного білка, що використовується організмом для певної мети. При підвищенні температури помітно активізуються процеси біосинтезу ліпідів в порівнянні з біосинтезом білків, що і обумовлює раннє накопичення жиру в організмі риб, вирощуваних на теплих скидних водах. Зміна обміну речовин при підвищенні або пониженні температури вимагає пристосування всіх функцій організму, тобто адаптації особин.

Вельми істотна роль температурного режиму в проходженні окремих ланок репродуктивного циклу. Так, тільки при певній температурі у риб починається нерест. Вплив температури на швидкість статевого дозрівання відмічений у всіх холоднокровних тварин. Наприклад, короп залежно від кліматичних зон може досягати статевої зрілості у віці 5…6 років (Карелія) і в 6…8 міс. (Куба).

При цьому міняється і періодичність проходження нересту. Температурний режим також впливає і на тривалість життя гідробіонтів. Наприклад, раннє настання статевої зрілості призводить до того, що ріст риб різко сповільнюється. Якщо проходження окремих стадій розвитку в результаті підвищення температури води швидшає, то тривалість всіх стадій в сукупності, а отже, і всього життя скорочується. Короп на Кубі рідко живе більше 8 років, тоді як в центральних районах СРСР він доживає до 20 років і більше.

Від температури води залежить характер прояву і перебігу різних хвороб. Так, при низькій або високій температурі води у коропа уражається зябровий апарат. Температурний режим впливає і на фізіологічний стан риб. Наприклад, залежно від температури води різко змінюється характер прояву і перебігу краснухи, запалення плавального міхура і інших хвороб.

3. Прозорість води

Прозорість води є одним з основних критеріїв, що дозволяють судити про стан водоймища. Вона залежить від кількості зважених частинок, змісту розчинених речовин і концентрації фіто- і зоопланктону. Впливає на прозорість і колір води. Чим ближчий колір води до голубого, тим вона прозоріша, а чим жовтіше, тим прозорість її менше.

Важливим чинником, що визначає прозорість води в непроточних водоймищах, є біологічні процеси. Прозорість води тісно пов'язана з біомасою і продукцією планктону. Чим краще розвинений планктон, тим менше прозорість води. Таким чином, прозорість води може характеризувати рівень розвитку життя у водоймищі. Прозорість має велике значення як показник розподілу світла (променистої енергії) в товщі води, від якого залежить в першу чергу фотосинтез і кисневий режим водного середовища.

4. Газовий режим водоймища

Газовий режим водоймища багато в чому визначається розчинністю газів, яка, у свою чергу, залежить від природи газу, температури води, величини її мінералізації, а також тиску. Добре розчиняється у воді вуглекислий газ і значно гірше кисень. З підвищенням температури води розчинність газів зменшується. Збільшення мінералізації води також знижує їх розчинність.

Гази, розчинені у воді, завжди прагнуть прийти в рівновагу відповідно до їх парціального тиску в атмосфері. Якщо їх вміст у воді менше, ніж в атмосфері, то відбувається поглинання газів водою з атмосфери (процес інвазії); при більшому вмісті газів у воді, ніж в атмосфері, спостерігається виділення їх (евазія) з води в атмосферу. Сірководень і водень, парціальний тиск яких в атмосфері практично рівно нулю, не накопичуються в значній кількості у водоймищах, оскільки відбувається їх виділення в атмосферу.

Найбільше значення для водних організмів мають кисень, вуглекислий газ і сірководень. Наявність у воді розчиненого кисню є обов'язковою умовою для існування більшості організмів, що населяють водоймища. Молекулярний кисень атмосфери і вода є двома головними джерелами, з яких кожна клітка аероба черпає кисень. Тільки дуже небагато гідробіонтів, що відносяться переважно до бактерій і простим, володіють здатністю жити у відсутність кисню. Вміст кисню у воді залежить від співвідношення двох протилежно протікаючих процесів: перший – що збагатить воду киснем, другий – зменшуючий його вміст у воді.

Збагачення води молекулярним киснем здійснюється за рахунок виділення його водною рослинністю в процесі фотосинтезу, а також під час вступу з атмосфери. Збагачення киснем атмосфери верхніх шарів води відбувається за умови, що у воді його менше, ніж при нормальному насиченні, при відповідній температурі і тиску атмосферного повітря. Швидкість розповсюдження газів у воді значно менше, ніж в повітрі, тому в стоячих водоймищах цей процес йде украй поволі. При сильній течії, вітрі, розбризкуванні процес насичення води киснем помітно швидшає.

Могутнім джерелом збагачення води молекулярним киснем є фотосинтез водних рослин. Інтенсивність його залежить від температури і освітлення. Фотосинтез відбувається головним чином в поверхневих шарах води, добре освітлених і прогрітих.

Одночасно із збагаченням води киснем йдуть процеси, що зменшують його вміст у водоймищі. Так, майже всі біохімічні реакції, що протікають у воді, пов'язані із споживанням кисню. До таких реакцій відносяться: бактерійне окислення органічних речовин і неорганічних з'єднань, дихання тваринних і рослинних організмів. Кількість споживаного рибами кисню залежить як від виду риби, так і від її віку. У риб наголошується чітка видова специфічність як відносно мінімальної кількості кисню, розчиненого у воді, при якому може жити риба, так і по інтенсивності споживання кисню, в процесі дихання. При збільшенні температури пороговий тиск кисню зростає.

Вплив кисневих умов на ембріогенез тварин пов'язаний в першу чергу із зміною швидкості розвитку і росту. Так, із збільшенням змісту кисню у визначеному для кожного вигляду діапазоні концентрацій відбувається прискорення ембріогенезу. Подальше збільшення змісту кисню приводить до уповільнення розвитку зародків і поглиблення аномалій, що утворюються. Відомо, що надмірна концентрація кисню може бути навіть летальною.

Від концентрації кисню у воді залежить життєдіяльність риб. При зниженні його нижче певних меж падає інтенсивність живлення і використовування їжі на росту, внаслідок чого сповільнюється росту риб. Так, при зменшенні змісту кисню до 45–50% насичення у памолоді коропа споживання їжі знижується майже в 2 рази, а її засвоюваність падає на 40–50%, що приводить до зниження швидкості росту більш ніж в 2 рази. У канального сома при зниженні змісту кисню до 36% насичення швидкість росту зменшується в 2,5 рази. В умовах інтенсивного рибницького господарства у багатьох видів вирощуваних риб зниження швидкості росту наступає при зменшенні змісту кисню від 40 до 65%.

При недоліку кисню у воді знижується стійкість риб до несприятливих чинників зовнішнього середовища, зокрема до промисловим і побутовим забрудненням. Низький зміст кисню обумовлює несприятливі зоогігіенічні умови у водоймищі; внаслідок чого створюються передумови до накопичення органічних речовин і розмноження сапрофітної мікрофлори, яка може негативно діяти на риб. Тривале перебування у воді з недостатнім змістом кисню знижує активність риб, різко знижує стійкість до збудників хвороб.

5. Вуглекислий газ

Вуглекислий газ має важливе значення в житті гідробіонтів. Вміст його в атмосфері в середньому складає 0,33%. При зіткненні з водою СО2 частково розчиняється і піддається гідролізу:

СО2 + Н2О = Н2СО3.

У хімічну реакцію з водою вступає лише незначна частина СО2, решта його кількості знаходиться у вільному вигляді ж. Наявність у воді вугільної кислоти сприяє розчиненню карбонату кальцію і перекладу його в гідрокарбонат, що володіє більшою розчинністю, ніж карбонат кальцію.

СаСО3 + Н2СО3 = Са (НСО3) 2.

Унаслідок розчинення вуглекислих солей вода збагатить карбонатами і бікарбонатами. Таким чином, в природних водах вуглекислота міститься: у вільному стані у вигляді газу, розчиненого у воді – двоокисі вуглецю; у вигляді іонів НСО3 – гідрокарбонат-іонів; у вигляді іонів СО3~ – карбонат-іонів. Всі ці форми знаходяться в рухомій хімічній рівновазі.

У водоймищах основним джерелом СО2 є бактерійне окислення органічних речовин, а також дихання водних організмів. Біопродуктивність водоймищ певною мірою визначається наявністю двоокису вуглецю. Вуглецеве живлення водоростей, як і вищої водної рослинності, є основою їх існування і визначає можливість їх інтенсивного розвитку. У великій концентрації вуглекислий газ отруйний для тварин, і з цієї причини водоймища, пересичені вуглекислотою, позбавлені життю.

Негативний вплив високої концентрації вуглекислоти на життєдіяльність риб полягає у тому, що риби, знаходячись в пригноблюваному стані, гірше використовують кисень, розчинений у воді. При цьому значення має не просто абсолютний вміст у воді кисню і вуглекислоти, а співвідношення їх. Для коропа наприклад, співвідношення О2 і СО2, що наближається до 0,02 є небезпечним. При низькому вмісті кисню і несприятливому співвідношенні О2 і СО2 риба значно гірше використовує корм. Критична концентрація вуглекислого газу для різних видів риб неоднакова.

6. Водневий показник (рН)

Водневий показник (рН) є одним з важливих чинників середовища. Найбільш сприятливе для більшості риб значення рН, близьке до нейтрального. При значних зрушеннях в кислу і лужну сторону зростає кисневий поріг, ослабляється інтенсивність дихання. Можливі межі рН, в яких можуть жити прісноводі риби, за інших рівних умов залежать від видової приналежності. Найбільш витривалі карась і короп, щука переносить коливання рН в межах 4,8…8,0; форель – 4,5…9,5; короп 4,3… 10,8.