Источниками поступления микроорганизмов в среду обитания космического объекта являются как космонавты, их покровные ткани и слизистые оболочки, так и различные грузы – оборудование, расходуемые материалы, постоянно доставляемые на борт. Естественно, невозможно полностью ограничить этот процесс, т.к. человек при разговоре, кашле, физической нагрузке, да и просто при дыхании выделяет в окружающую среду значительное количество микробов. Также невозможно обеспечить тотальную стерилизацию всех поступающих в космический корабль грузов, хотя в этом направлении делается очень многое.
На каждом этапе изготовления космического корабля, при монтаже оборудования, перед стартом обязательно проводится дезинфекция. Монтажников допускают к работе только после медосмотра и в специальной сменяемой одежде. Подготовка расходуемых материалов и оборудования для комплектации космических объектов проводится в так называемых чистых помещениях, где контролируется содержание микроорганизмов не только в воздухе и на поверхностях, но и для ряда технологических процессов – на руках исполнителей.
И, несмотря на это, микроорганизмы постоянно попадают в среду обитания космических объектов и многие из них чувствуют себя там очень комфортно. Чем же чреват этот процесс для безопасности космических полетов? На самом деле положение очень серьезное. Во-первых, при снижении иммунитета человека некоторые микроорганизмы, безвредные при других обстоятельствах, могут выступать в роли агентов инфекции и аллергенов. Но есть еще один аспект этой проблемы. Это – установленная способность многих бактерий и особенно плесневых грибов вызывать биопомехи в работе различной аппаратуры, повреждать конструкционные материалы, в том числе синтетические полимеры, провоцировать коррозию металлов.
Знаменательно, что микроорганизмы ведут себя так, как, будто у них есть определенная цель. Такое поведение характерно для всех живых организмов и его называют целесообразным или телеономическим поведением. Совокупность протекающих в них процессов кажется направленной на выполнение предначертанного плана. Цель этого плана, применительно к миру микробов – использовать доступные для клетки в настоящий момент питательные вещества для образования двух клеток из одной с максимально возможной скоростью.
В этой связи следует подчеркнуть еще одну важнейшую особенность, присущую микроорганизмам. Это - способность расщеплять самые разнообразные химические соединения, которую английский ученый Гейл сформулировал как принцип “микробной всеядности”. Имеется в виду принципиальная возможность существования некоего микроорганизма, способного при подходящих условиях окислить любое вещество, теоретически способное к окислению. Таковы, на наш взгляд, общебиологические основания рассматривать потенциальные возможности бактерий и микроскопических грибов вызывать повреждения материалов в качестве одной из фундаментальных проблем обитаемости длительно действующих космических объектов.
Попадая на различные материалы, отдельные виды микроорганизмов, чаще всего бактериально-грибные ассоциации, быстро приспосабливаются к ним и начинают свою жизнедеятельность. В результате этого может изменяться цвет материалов, снижаться механическая прочность, герметизирующие свойства, диэлектрические и другие характеристики.
В настоящее время мировой ущерб от микробиологических повреждений только полимерных материалов превышает 2 % от объема промышленной продукции. Для космических орбитальных станций с учетом сроков их функционирования и требований по обеспечению надежности и безопасности их эксплуатации эта проблема стоит очень остро.
Положение усугубляется еще и тем, что из-за отсутствия сквозной вентиляции в замкнутом объеме влага, содержащаяся в воздухе, может выпадать в отдельных местах в виде росы, так называемого конденсата, содержащего большое количество химических веществ, которые микроорганизмы могут использовать в качестве источника питания. Развитие микроорганизмов могут стимулировать и физические факторы, присущие космическому полету – периодические изменения солнечной активности, радиационные уровни, градиенты магнитных полей и т.д.
Опыт эксплуатации российских орбитальных станций и особенно станции “Мир” свидетельствует о том, что такие процессы, как развитие микробиологических повреждений полимерных конструкционных материалов, возникновение биокоррозии металлов, формирование биопленок и “тромбов” в гидромагистралях систем регенерации воды следует рассматривать как постоянно действующие факторы экологического риска.
Целенаправленные исследования по проблеме микробиологических повреждений конструкционных материалов были начаты в Государственном научном центре Российской Федерации - Институте медико-биологических проблем (ГНЦ РФ ИМБП) в период эксплуатации орбитальной станции “Салют-6”. Пятый основной экипаж этой станции обнаружил наличие белого налета на отдельных участках интерьера, тягах тренажера для физических упражнений и в некоторых других зонах обитаемых отсеков. При исследовании доставленных на Землю проб был выявлен рост плесневых грибов –пенициллов, аспергиллов и фузариумов.
В ходе работы 5-й основной экспедиции на орбитальной станции “Салют-7” было получено сообщение космонавтов о наличии видимого роста плесени в отдельных зонах интерьера, разъемах и кабелях в рабочем отсеке. Фрагменты материалов были отобраны экипажем и доставлены на Землю для проведения лабораторных исследований. Визуальный осмотр полученных фрагментов показал, что мицелий плесневых грибов покрывал от 25 до 50 % поверхности образцов. При осмотре под микроскопом были выявлены изменения структуры образцов, а на отдельных материалах, в частности на изоляционной ленте, были обнаружены сквозные дефекты.
Особый интерес представляет ситуация, связанная с навигационным иллюминатором одного из транспортных кораблей “Союз”, который в течение полугода эксплуатировался в составе орбитальной станции “Мир”. В ходе работы члены 3–го основного экипажа отмечали прогрессирующее ухудшение оптических характеристик иллюминатора. После возвращения транспортного корабля на Землю были проведены исследования, которые выявили следующую картину. На центральном окне и большинстве периферических окон иллюминатора, выполненных из сверхпрочного кварцевого стекла, а также на эмалевом покрытии титановой оправы отмечалось наличие мицелия плесневых грибов и в одном случае отчетливо была видна растущая колония гриба. По линиям роста мицелия стекло было как бы “протравлено”. Визуально создавалось впечатление, что источником обрастания грибами служила паронитовая (резиновая) прокладка, с помощью которой стекло фиксировалось в титановой оправе. Из зон повреждений была выявлена ассоциация микроорганизмов, включающая спорообразующие бактерии и грибы.
Наглядным примером микробиологического повреждения оборудования является ситуация с выходом из строя блока управления прибора коммутационной связи, доставленного на Землю при возвращении со станции “Мир” 24–й основной экспедиции. Под металлическим кожухом прибора был обнаружен активный рост плесневых грибов на изоляционных трубках, контактных колодках, на армированном полиуретане. Этот процесс сопровождался окислением медных проводов в местах повреждения изоляции.
В ходе эксплуатации орбитальной станции “Мир” имели место и другие случаи микробиологических повреждений оборудования. Так, в системе регенерации воды из конденсата неоднократно отмечались нарушения в работе, обусловленные образованием гелеподобных “тромбов” в просвете гидромагистралей, по которым конденсат поступает на регенерацию. В доставленных на Землю фрагментах металлических и полимерных трубопроводов на внутренних поверхностях был обнаружен слизистый налёт и выявлен пристеночный рост бактериально-грибных ассоциаций. Видимый рост плесневых грибов неоднократно фиксировался космонавтами, особенно на оборудовании, расположенном в запанельном пространстве.
Различают два основных типа агрессии микроорганизмов в отношении конструкционных материалов: “прямое воздействие”, т.е. ферментативное разложение материалов с использованием их в качестве источника питания и “косвенное воздействие” - рост на загрязнениях, попадающих на поверхности материалов, с выделением продуктов жизнедеятельности, например, органических кислот. Ярким примером “косвенного воздействия” является повреждение сверхпрочного кварцевого стекла иллюминатора. Микроорганизмы, конечно же, не использовали его в качестве питательного субстрата, они росли на его поверхности за счёт липидной плёнки, конденсата атмосферной влаги и прочих загрязнений, но при этом, выделяя продукты метаболизма, нарушали его оптические характеристики.
Существенно важным является то обстоятельство, что отдельные микроорганизмы проявляют способность к резидентному заселению конструкционных материалов среды орбитального комплекса “Мир”. Проведенные в ГНЦ РФ ИМБП совместно со специалистами МГУ им. М.В. Ломоносова генетические исследования подтвердили наличие такого свойства у некоторых культур выделенных в условиях полета. Так, было показано, что штаммы некоторых грибов, выделенные в 1995 г., являлись потомками культур, обнаруженных в 1988 году.
И вместе с тем, космическая орбитальная станция “Мир” успешно функционирует уже 15 лет. И здесь немаловажную роль играет используемая система обеспечения микробиологической безопасности, разработанная в ГНЦ РФ – ИМБП РАН. Об эффективности указанной системы свидетельствует следующее: