Смекни!
smekni.com

Катаболизм и стресс у растений (стр. 4 из 4)

Накопление патогениндуцированных белков и устойчивость к инфекции проявляются и в соседней неинфицированной ткани. Из этого следует, что защитные белки индуцируются подвижными веществами, которые образуются в местах инфекции и затем передвигаются в непораженные ткани листьев, вызывая в них эффект защиты.

Активный в качестве индуктора компонент не инактивируется протеазами, его положительный заряд и тепловая стабильность могут свидетельствовать, что он представляет собой маленький пептид или аминокислоту. Малые гликопептиды, присутствующие в инфицированных вирусом табачной мозаики листьях табака, могут отвечать за индукцию системной устойчивости растений [8, стр.298].

Уже отмечалось, что под влиянием инфекции наблюдаются лигнификация, суберинизация клеточных стенок, накопление в них гидроксипролиновых белков, каллозы, что создает дополнительный барьер для патогенов. Происходит также накопление оксигенированных производных ненасыщенных жирных кислот, летучих ароматических гексаналей, таннинов, О-хинонов [8, стр.287]. Так как избыточное образование всех этих соединений связано с активацией имеющихся в клетках или с синтезом новых ферментов, то не были неожиданными факты индукции экспрессии патогеном большого количества генов[8, стр.288].

По всей вероятности, круг защитных веществ может быть со временем значительно расширен.

Реакция растений на действие вирусов, так же как на патогенные грибы и бактерии, может варьировать между иммунностью и восприимчивостью [6, стр.328]. Большинство растений устойчиво к вирусной инфекции благодаря природной селекции в ходе эволюции. Интересно, что свойство устойчивости распространяется из инфицированных в непораженные клетки и ткани. Вирусреплицирующая способность растений может быть усилена некоторыми фитогормонами (кинетином, ИУК), полианионами (дрожжевой РНК, поли-И, поли-Ц, сополимером этиленмалеинового альдегида, полиакриловой кислотой). Устойчивость развивалась градуально и была чувствительна к актиномицину Д.

Изучению молекулярных основ взаимодействия патогенов и растения-хозяина, в том числе роли продуктов частичной деградации биополимеров и липидов в выработке устойчивости, в настоящее время уделяется все большее внимание. В дополнение к журналу, посвященному этому направлению исследований - "RhysiologicalandMolecularPlantPathology", недавно начал издаваться специальный журнал "MolecularPlant - MicrobeInteractions". Можно надеяться, что это приведет к подъему уровня работ не только в области молекулярной фитопатологии, но и в теории стресса в целом[8, стр.297].


4. ЗАКЛЮЧЕНИЕ

Уже давно внимание биологов и медиков привлекало интереснейшее явление: в результате действия экстремальных условий, изоляции или отмирания растительных или животных тканей образуются вещества, способные действовать на здоровые клетки и ткани, их рост и развитие, устойчивость и т.д. К ним можно отнести и "раневые гормоны" и "некрогормоны", существование которых было постулировано в начале нашего века Г. Габерляндтом [2, стр.122]. Не вызывает сомнений, что среди этих веществ имеются продукты распада сложных соединений. Некоторые из них способны выделяться в окружающую среду и оказывать действие на другие организмы в экосистемах[4, стр.197].

Рассмотрение особенностей катаболизма биополимеров и липидов в растениях в условиях стресса оказалось сложной задачей, причем не столько из-за избытка, сколько из-за недостаточности сведений, касающихся многих промежуточных этапов деградации этих соединений. Значительная часть литературы посвящена ферментам, катализирующим главным образом, стартовые реакции процессов катаболизма. Хорошо изучены и реакции дальнейшего превращения образующихся при деградации мономерных продуктов. В то же время весьма немногочисленны результаты исследований промежуточных (например, олигомерных) продуктов, их структуры, характера дальнейших превращений, биологической активности и механизма их действия на обмен веществ клеток, что объясняется как методическими трудностями, так и недостаточным вниманием физиологов и биохимиков растений к этой важной области метаболизма.

Можно считать доказанным, что интермедиаты катаболизма биополимеров и липидов играют большую роль в работе сложного регуляторного механизма клетки и в коррекции метаболизма в соответствии с изменившимися условиями, в частности в формировании ответной реакции клеток растений на действие различных стрессоров[4, стр.198].

Необходимо иметь в виду, что сведения о роли продуктов катаболизма в регуляции обмена веществ получены на основании изучения действия экзогенных соединений. Однако нельзя считать, что реакция клеток на эти соединения будет тождественна реакции на их появление или повышение содержания в том или ином компартменте внутри клеток. Более того, представляется вероятным, что клетка реагирует на многие экзогенные биополимеры и липиды и продукты их деградации как на "обломки кораблекрушения", как на сигналы тревоги, идущие от разрушенных или находящихся в состоянии сильного стресса соседних клеток. Эти органические соединения, взаимодействуя с поверхностью клеточной мембраны, вызывают ее включение в цепь усиления сигнала тревоги, состоящую из различных вторичных посредников (в том числе упоминавшихся в предыдущих разделах). По всей вероятности, на внешней стороне плазмаллемы имеются разнообразные рецепторы, с которыми способны связываться вышеупомянутые "обломки кораблекрушения". Можно предполагать, что это реликтовые формы конструкций, с помощью которых осуществлялось получение информации об изменениях гуморальной обстановки вокруг клетки. Некоторые из этих рецепторных конструкций совершенствовались в ходе эволюции многоклеточных высших растений и стали играть роль специализированных высокоэффективных рецепторов гормонов. За другими могла сохраниться изначальная функция взаимодействия с достаточно сложными органическими соединениями (индукторами защитных реакций, в особенности против патогенов), но само появление этих соединений в окружающей здоровую клетку среде приобрело значение неблагополучия, сигнала тревоги. Судя по имеющимся данным, клетка воспринимает различные экзогенные соединения как знак тревоги при значительно меньших концентрациях, по сравнению с теми же веществами эндогенного происхождения[4, стр.199].

Имеются основания считать, что растительные клетки обладают сходной системой коррекции метаболизма. Если принять это положение, то необходимо дополнить схему, приведенную на рис. 1 (отражающую роль промежуточных продуктов катаболизма как эндогенных регуляторов внутри тех клеток, где они образовались), фрагментом, объясняющим роль этих продуктов в качестве экзогенных эффекторов метаболизма для других клеток (рис. 4). Этот фрагмент включает взаимодействие с рецепторами клеточной мембраны и участие систем вторичных посредников в передаче сигналов в генетической аппарат.

В большинстве случаев имеется информация о действии на функции клеток лишь одного из промежуточных продуктов катаболизма, реже в сочетании с уже хорошо изученным "метаболическим репером", например ауксином. В то же время необходимо учитывать сложность влияния на обмен веществ клеток совокупности образующихся при катаболизме сигнальных молекул, изменения их набора или соотношения концентраций. Например, при изучении образования фитоалексинов растениями под влиянием патогенного гриба Phytophtorainfestans. Оказалось, что элиситорная активность продуцируемых грибом арахидоновой и эйкозапентаеновой кислот значительно повышалась в присутствии водорастворимых b-1,3-глюканов, тоже появляющихся в результате взаимодействия патогена и хозяина. Это позволяет говорить о взаимной корректировке (в данном случае усилении) биологического действия продуктов катаболизма различных классов биополимеров и липидов[4, стр.199].

Рис. 4. Схема действия некоторых органических (сигнальных) веществ, освобождаемых поврежденной или находящейся в состоянии сильного стресса клеткой, на соседние клетки

В одном из своих выступлений академик А.Л. Курсанов сравнил проблему регуляции функций растений с горной вершиной, которую предстоит покорить и только у подножия которой находятся исследователи.

В настоящей работе предпринята попытка, используя данные, полученные из различной литературы, показать, что в покорении вершины регуляции имеется еще один перспективный путь - изучение промежуточных продуктов катаболизма биополимеров и липидов, их биологической активности и механизмов их действия на физиолого-биохимические процессы.

Разнообразие и высокая специфичность ферментов, отвечающих за реакции деградации биополимеров и липидов, обнаруживаемые в последнее время тонкие механизмы регуляции активности этих ферментов или ферментных систем, все большая информация о биологической активности образующихся соединений позволяют считать, что направленное исследование роли промежуточных продуктов катаболизма в регуляции анаболических процессов и связанных с ними функций растений Должно привести в ближайшие годы к новым интересным результатам.

Многие из этих физиологически активных продуктов найдут применение в сельском хозяйстве, медицине и биотехнологии как активаторы или ингибиторы в качестве самостоятельных препаратов или в комплексе с другими, уже применяющимися соединениями[4, стр.199].


Список литературы:

1. Войников В.К., Иванова Г.Г.Физиологический стресс и регуляция активности ге­нома клеток эукариотов // Успехи соврем, биологии. 1988. Т. 105, № 1. С. 3-14.

2. Дин Р.Процессы распада в клетке. М.: Мир, 1981. 120 с.

3. Заленский О.В. Эколого-физиологические аспекты изучения фотосинтеза. Л.: Наука, 1977. с.57-60 (Тимирязевские чтения).

4.Ильинская Л.И., Васюкова Н.И., Озерецковская О.Л.Биохимия аспекты индуцированной устойчивости и восприимчивости растений М.: 1991 с. 197-199 (Итоги науки и техники. Защита растений; Т. 7).

5. Курсанов А.Л. Взаимосвязь физиологических процессов в растении. М.: Издательство АН СССР, 1960. с.44-45 (20-е Тимирязев. чтение).

6.Одум Ю. Экология. М.: Мир, 1986. Т. 1. 328 с.

7. Вознесенский В.Л. Фотосинтез и дыхание растений в разных условиях среды // Фотосинтез и продукционный процесс / Под ред. А.А. Ничипоровича. М.: Наука, 1988. С. 132-137.

8. Блехман Г.И., Шеламова Н.А. Синтез и распад макромолекул в условиях стресса // Успехи соврем, биологии. 1992. Т. 112, № 2. С. 281-297.

9. Бурлакова Е.Б., Хохлов А.П. Изменение структуры и состава липидной фазы био­логических мембран при действии синтетических антиоксидантов: Влияние на пере­дачу информационного сигнала на клеточном уровне // Биол. мембраны. 1985. Т. 2, № 6. С. 557-562.