Смекни!
smekni.com

Катаболизм и стресс у растений (стр. 3 из 4)

Наружным покровом растений является кутикула, состоящая главным образом из гетерополимера кутина, погруженного в воск. Обнаружено более 20 мономеров, из которых состоит кутин: различной длины насыщенные и ненасыщенные жирные кислоты и спирты, в том числе гидроксилированные и эпоксидированные, дикарбоксиловые кислоты и т.д. В кутине большинство первичных спиртовых групп участвует в образовании эфирных связей, так же как часть вторичных спиртовых групп, обеспечивающих сшивки между цепями и точки ветвления в полимере. Другой "барьерный" полимер - суберин, состоит, по-видимому, из фенольных и алифатических доменов, первые из которых близки по своему составу к лигнину, а вторые - к кутину. Отличия алифатического домена в том, что свободные жирные кислоты являются главным компонентом субериновых восков, в то время как в кутине их очень мало. Кроме того, в суберине присутствуют главным образом С22и С24 жирные спирты, в то время как в кутине – С26 и С 28[5, стр.44].

Оказалось, что многие патогенные грибы могут выделять ферменты, гидролизующие кутин и суберин. При гидролизе лигниноподобной фракции суберина образовывались кумаровая и феруловая кислоты, причем большая часть фракции оставалась негидролизованной. Продуктами кутиназной реакции были различные оксигенированные жирные кислоты и спирты [5, стр.45].

По всей вероятности, в спорах грибов кутиназа содержится в очень небольших количествах, и при контакте с кутикулой растений гидролизу подвергается лишь малая часть кутина. Однако образующиеся активные сигнальные молекулы - 10,16-дигидрокси-С16- и 9,10,18-тригидрокси-С18-кислоты - транспортируются в прорастающую спору и индуцируют образование больших количеств дополнительной кутиназы, начинающей интенсивное разложение кутина и облегчающей инфицирование растения. Было обнаружено, что лаг-период появления кутиназной м-РНК после начала действия ди- и триоксикислот составляет всего 15 мин, а появления кутиназы - в два раза больший [5, стр.45]. Ингибирование кутиназы с помощью химических препаратов или антител предотвращало инфекцию.

Одной из важных задач исследователей молекулярных взаимодействий между патогеном и тканями растения-хозяина были поиски сигнальных веществ, индуцирующих защитную реакцию инфицированных клеток и системную - в удаленных от места инфекции местах.

Вполне вероятно, что продукты деградации кутина (оксигенированные жирные кислоты и спирты) могут выступать в роли не только индукторов образования кутиназы у патогена, но и элиситоров синтеза защитных веществ в клетках растения-хозяина (см. рис.2).

К числу высокоэффективных элиситоров защитного ответа инфицированных растений относятся олигомерные продукты деградации полисахаридов клеточных стенок хозяина или патогена[5, стр.45].

Гидролитические ферменты (в том числе гликопротеины) патогенных грибов активируют защитную реакцию хозяина, освобождая биологически активные углеводы из клеточных стенок хозяина или патогена.

Было найдено, что суспензионные клетки табака вырабатывали фитоалексины (капсидиол и др.) в ответ на обработку целлюлазой, что свидетельствует об элиситорных свойствах линейных β-1,4-глюкановых фрагментов целлюлозы. В этой связи представляют интерес данные об активирующем действии дисахарида целлобиозы на синтез целлюлозы из 14С-глюкозы или из меченой УДФГ в клетках волосков семян хлопчатника. Так как в клетках не содержится эндогенной целлобиозы, то, по-видимому, экзогенная целлобиоза служит миметиком олигосахаридов более высокой степени полимеризации[9, стр.562].

В формировании ответной реакции растений на патогены принимают участие также полиеновые жирные кислоты.

Оказалось, что элиситорным эффектом обладает не белковая часть липопротеинов, а их липидная часть, представляющая собой не свойственные для высших растений арахидоновую (эйкозатетраеновую) и эйкозопентаеновую кислоты. Они вызывали образование фитоалексинов, некротизацию тканей и системную устойчивость растений к различным патогенам. Продукты липоксигеназного превращения в тканях растений упомянутых выше С20 жирных кислот (гидроперокси-, гидрокси-, оксо-, циклические производные, лейкотриены), образующиеся с помощью имеющегося в клетках хозяина ферментного липоксигеназного комплекса (субстратами которого могут быть как C18, так и С20 полиеновые жирные кислоты), оказывали сильнейшее влияние на защитную реакцию растений. Это объясняется, по-видимому, тем, что в неинфицированных растениях нет оксигенированных производных 20-углеродных жирных кислот, и их появление в результате инфицирования приводит к драматическим результатам, например к гибели клеток и образованию некрозов, что создает барьер для распространения инфекции. Имеются данные, что индуцирование патогеном липоксигеназной активности приводило к формированию ответной реакции растения и в том случае, когда элиситор не содержал С20 жирных кислот и субстратом липоксигеназной активности могли быть только собственные полиеновые жирные кислоты, а продуктами - октадеканоиды, а не эйкозаноиды. В связи с этим представляют большой интерес сведения о том, что жасмонат может индуцировать синтез ингибиторов протеиназ[10, стр.562]. Знаменательно, что глюкан и Са2+ усиливали влияние арахидоната и эйкозапентаеноата. Так как ЭГТА (специфический лиганд Са2+) ингибировал синтез фито-алексинов, то можно сделать предположение, что ионы кальция играют важную роль в регуляции осуществления защитной функции растений[5, стр.44].

Не исключено, что сигнальными веществами являются и продукты деградации белков клеточных стенок, богатых оксипролиновыми остатками и содержащих олигогликозильные ответвления.

Под влиянием воздействия многообразных элиситоров в инфицированных растениях начинают вырабатываться защитные вещества, повышающие устойчивость клеток к инфекции. К ним относятся в первую очередь фитоалексины - растительные антибиотики, представляющие собой соединения фенилпропаноидного и терпеноидного характера. Например, у картофеля под влиянием Phytophtorainfestans образуются ришитин и любимин[2, стр.123].

Элиситоры индуцируют образование большого количества белков, как правило, не характерных для неинфицированных тканей.

1. Патогениндуцированные белки, представляющие собой группу щелочных и кислых белков с относительно небольшой молекулярной массой (10-20 кДа), функции которых в большинстве случаев не выяснены.

2. Хитиназы и β -глюканазы, накапливающиеся в вакуоле и клеточных стенках. Интересно, что b-глюканаза "созревает" в две стадии. Первая заключается в удалении с N-конца олигопептида (насчитывающего 21 остаток аминокислот) и в N-гликозилировании С-конца белка, вторая - в отщеплении от образовавшегося промежуточного белка олигопептида с 22 аминокислотными остатками, включая углеводную ветвь, присоединившуюся на предыдущей стадии.

3. Ингибиторы протеиназ, вырабатываемые как в результате механического повреждения тканей (например, листогрызущими насекомыми), так и в результате инфицирования патогенами. Их синтез вызван фрагментами пектиновых веществ клеточных стенок. Интересно, что индукция ингибиторов протеиназ сопровождалась фосфорилированием белков плазмалеммы клеток хозяина.

4. Серусодержащие белки - тионины, высокотоксичные для грибов. Как уже отмечалось выше, наблюдается также значительное усиление

образования оксипролиновых белков (в том числе ферментов, например пероксидазы, от активности которой зависит синтез лигнина), входящих в состав клеточных стенок.

Интенсивное новообразование различных белков является отражением перестройки метаболизма инфицированных растений, приводящей к нарастанию устойчивости к патогену[9, стр.557].

Хитиназы из зерна пшеницы, ячменя и других растений обладали свойствами эндохитиназ, в то время как бактериальные ферменты проявляли экзохитиназную активность.

Хитин (поли-М-ацетилглюкозамин) является компонентом клеточных стенок грибов и членистоногих. В них содержатся и хитиназы, которые наряду с хитин-синтетазными комплексами определяют особенности структуры хитинсодержащих клеточных стенок. Однако хитиназа обнаруживается и у организмов, не содержащих хитина: у почвенных бактерий (экзохитиназа, отщепляющая по очереди концевые N-ацетилглюкозные остатки) как инструмент добывания пищи и у растений (эндохитиназа) как инструмент защиты от грибной инфекции и от некоторых насекомых. Интересно, что хитиназа растений как индивидуальный белок обладает также свойствами лизоцима. Основными продуктами деградации хитина были хитобиоза, хитотриоза и хитотетраоза.

"Антигрибные" хитиназы, по-видимому, широко распространены в царстве растений, в стеблях и листьях индуцируясь этиленом или атакой патогенов, а в семенах запасаясь как средство повышения устойчивости к грибам почвы. Хитиназы растений действуют прямо на растущие кончики гифов гриба, вероятно, вместе с другими гидролазами подавляя рост гифов и ограничивая инфицирование растений[8, стр.297].

Специальные исследования показали, что при взаимодействии бактерий и тканей хозяина различные ферменты деградации появляются не одновременно. Например, пектилметилэстераза присутствовала и в неинокулированных бактерией Erwiniacarotovorasubspatroseptia тканях клубней картофеля[8, стр.298], тогда как полигалактуроназная, пектатлиазная, целлюлазная, протеазная и ксиланазная активности появлялись соответственно через 10,14,16,19 и 22 ч после инокуляции.