Так принцип относительности, сформулированный Галилеем для механических явлений в начале XX в., был распространен на любые физические процессы. Небезынтересно отметить, что, рассматривая влияние принципа относительности на гравитацию, Пуанкаре приходит к выводу, что скорость распространения сил тяготения должна равняться скорости света.
Итак, мы видим, что предшественники А. Эйнштейна немало сделали для появления теории относительности. Однако, развивая электродинамику и стремясь объяснить опыты, они опирались на концепцию эфира. Подойдя к принципу относительности, они не смогли поставить вопрос о постоянстве и, особенно, о предельном значении скорости света. Это и было сделано А. Эйнштейном (1879-1955). Основополагающая работа Эйнштейна по теории относительности называлась "К электродинамике движущихся сред". Она поступила в редакцию журнала "Анналы физики" 30 июня 1905 г. Работа состояла из двух частей. В первой из них были изложены основы новой теории пространства и времени, во второй - применение этой теории к электродинамике движущихся сред. В основу своей теории Эйнштейн кладет два постулата.
Принцип относительности - в любых инерциальных системах все физические процессы: механические, оптические, электрические и другие -протекают одинаково.
Принцип постоянства скорости света - скорость света в вакууме не зависит от движения источника и приемника, она одинакова во всех направлениях, во всех инерциальных системах и равна 3 · 108 м/с.
В 1907 г. выходит новая работа А. Эйнштейна "О принципе относительности и его следствиях". В ней автор вновь говорит о связи массы и энергии и для проверки этого соотношения обращается к радиоактивным процессам. Подсчеты показали, что для проверки формулы на известных в то время радиоактивных превращениях нужно знать атомные массы элементов с точностью до пятого знака. Эйнштейн писал: "Это, конечно, недостижимо. Однако не исключено, что будут открыты радиоактивные процессы, в которых в энергию радиоактивных излучений превращается большая часть массы исходного атома, чем в случае радия".
Очень интересна последняя часть работы, где ставится вопрос о Ч> Xраспространении принципа относительности на системы, движущиеся с ускорением. Именно здесь впервые появился принцип эквивалентности, согласно которому инертная масса тела равна его гравитационной массе или, что то же самое, силы гравитации физически эквивалентны силам инерции. На основе этого принципа Эйнштейн исследует влияние гравитации на ход часов и распространение света. Он делает вывод, что любой физический процесс протекает тем быстрее, чем больше гравитационный потенциал в области, где разыгрывается этот процесс, и что световые лучи искривляются в гравитационном поле. Итак, в 1907 г. Эйнштейн закладывает первые основы общей теории относительности (ОТО), над разработкой которой он неустанно работал 10 лет. Теория же, созданная им в 1905 г., в которой принцип относительности был сформулирован только для инерциальных систем, получила название специальной (частной) теории относительности (СТО).
В 1916 г. была опубликована общая теория относительности. Она распространила СТО на ускоренные системы. Эйнштейн ограничил применимость принципа постоянства скорости света областями, где гравитационными силами можно пренебречь. Зато он распространил принцип относительности на все движущиеся системы. Из ОТО был получен ряд важных выводов.
Свойства пространства-времени зависят от движущейся материи.
Луч света, обладающий инертной, а следовательно, и гравитационной массой, должен искривляться в поле тяготения. В частности, такое искривление должен испытывать луч, проходящий возле Солнца. Этот эффект, как указывал Эйнштейн, можно обнаружить при наблюдении положения звезд во время солнечного затмения. "Было бы крайне интересно, - пишет он, - чтобы астрономы заинтересовались поставленным здесь вопросом".
3. Частота света в результате действия поля тяготения должна
изменяться. В результате этого эффекта линии солнечного спектра под
действием гравитационного поля Солнца должны смещаться в сторону
красного света, по сравнению со спектрами соответствующих земных
источников. Этот эффект, по мнению Эйнштейна, также может быть
обнаружен экспериментально. Все это было принципиально ново, и для
утверждения ОТО нужна была ее экспериментальная проверка.
Возникновение и развитие теории квантов
14 декабря 1900 г., выступая в Берлинском физическом обществе, М. Планк для решения проблемы излучения предложил свою, как он ее скромно именовал, "рабочую гипотезу". Суть ее сводилась к тому, что энергия излучается не непрерывно, как полагали раньше, а отдельными порциями, т. е. дискретно. Это стало днем рождения квантовой физики - детища XX в. Экспериментальные же корни ее уходят глубоко в XIX в. Открытие и изучение рентгеновских и катодных лучей, радиоактивности, теплового излучения, атомных спектров, фотоэффекта и ряда других явлений с полным правом можно назвать истоками квантовой физики.
Началом фундаментальных теоретических работ по тепловому излучению является открытие Кирхгофом (1824-1887) в 1859-1861 гг. закона, согласно которому отношение испускательной способности evнагретого тела к его поглощательной способности avне зависит от природы тела, а является одинаковой для всех тел (универсальной) функцией длины волны (частоты) и температуры. Если ввести понятие черного тела, т. е. такого, которое поглощает все падающие на него лучи, то эта универсальная функция и будет равна его испускательной способности ( e* = f(v, Т). Заметим, что в природе нет абсолютно черных тел, но есть тела, близкие к ним. Например, поглощательная способность сажи, платиновой черни, черного бархата близка к 1.
Проблема излучения не давала Планку покоя, и он постоянно думал над ней. Рассказывают, что незадолго до своего великого открытия он поднялся на самую высокую и труднодоступную в своей альпинистской практике горную вершину. Воодушевленный победой, Планк погрузился в работу. Сначала он полуэмпирическим путем нашел формулу, которая хорошо совпадала с результатами эксперимента во всем спектре. Но формуле надо было дать реальное физическое звучание и обосновать установленный закон. "После нескольких недель напряженнейшей в моей жизни работы темнота рассеялась, и наметились новые, не подозреваемые ранее дали", -вспоминал позднее Планк. А суть дела заключалась в том, что Планк вынужден был отказаться от одного из основных положений классической физики - о непрерывном (сколь угодно малыми величинами) излучении энергии и принять новую гипотезу: излучение энергии может происходить только вполне определенными (дискретными) порциями - квантами. Величина кванта энергии: е0 = hv, где h- универсальная постоянная, получившая название постоянной Планка; v- частота излучения. Так, в физике появился квант энергии и совершенно новая величина h- квант действия, которая наряду с уже известными атомизмом вещества и электричества указывала на атомизм действия и энергии, что было совершенно чуждо классическим представлениям.
Но как быть с представлениями классической физики? И Планк дрогнул. В физике сложилась, пожалуй, беспримерная ситуация: выдвинув великую идею, творец испугался масштаба ее последствий. А квантовая гипотеза тем временем пробивала себе дорогу. И первым, кто принял кванты Планка всерьез, был молодой А. Эйнштейн. Он не только принял гипотезу Планка, а пошел дальше, заявив, что свет не только излучается, но и поглощается, и распространяется квантами. Световой квант был назван позднее фотоном. Развитием этой идеи явилась фотонная теория света, возродившая на новом уровне корпускулярные представления о нем и вскоре доказанная экспериментально.
Используя гипотезу световых квантов, А. Эйнштейн получил обобщенный закон фотоэффекта, разработал квантовую теорию теплоемкости. Для этого выдающегося ученого с самого начала было ясно, что квантовая гипотеза в любой своей форме несовместима с классическими представлениями, что все попытки введения ее в электродинамику Максвелла обречены на неудачу.
Роль открытия Планка постепенно была оценена всеми физиками. Эту оценку мы подытожим словами А. Эйнштейна: "Открытие Планка стало основой всех исследований в физике XX в. и с тех пор почти полностью обусловило ее развитие. Больше того, оно разрушило остов классической механики и электродинамики и поставило перед наукой задачу: найти новую познавательную основу для всей физики". Такой основой стала квантовая механика. Но это будет значительно позже.