Смекни!
smekni.com

Концепции современного естествознания (стр. 19 из 53)

Х. Гюйгенс (нидерландский ученый) сформулировал волновую теорию, которая по аналогии с движением волн на поверхности воды объясняла движение света. В пространстве существует упругая среда – светоносный эфир. Главный аргумент, который он приводил в защиту своей теории, - факт пересечения двух лучей света, которые пронизывают друг друга точно также как два ряда волн на воде. Против этой теории был такой факт: волны обтекают препятствие, а световой луч этого делать не может. Тень от непрозрачного предмета, помещенного на пути света, имеет резкую границу. Итальянский физик Гримальди с помощью увеличительных линз обнаружил на границах тени слабые участки освещенности в виде перемежающихся светлых и темных полос – ореолов. Это явление получило название дифракции света (разломанный). Однако авторитет Ньютона был настолько высок, что именно его теория света пользовалась признанием, хотя и не могла объяснить явление дифракции.

В нач. ХIХ в. английский физик Т. Юнг и французский физик О. Френель объяснили явление интерференции – появление темных полосок при наложении света на свет. Парадокс: свет, добавленный к свету, не обязательно дает усиление, а может дать более слабый свет или даже темноту. Так как свет – это колебания упругой среды, при наложении волн в противоположных фазах они уничтожают друг друга, поэтому появляются темные полосы.

В области электромагнитных явлений Фарадей и Максвелл показали неадекватность механической модели. Датский физик Эрстед открыл явление электромагнетизма: стрелка компаса, помещенного над проводником, по которому шел электрический ток, отклонялась. Фарадей ввел понятие «силовые линии». Он был убежден, что оптика и электричество взаимосвязаны и образуют единую область – «поле сил». Максвелл дал математическую разработку идеи Фарадея и рассматривал поле как самостоятельную физическую реальность. Фарадей предложил гипотезу, Максвелл создал теорию, а немецкий физик Герц дал экспериментальное подтверждение. В физике окончательно утвердилось понятие «поле» как физическая реальность, новый вид материи.

В конце XIX в. физики пришли к выводу, что материя существует в виде дискретного вещества и непрерывного поля. Вещество и поле различаются:

- вещество дискретно, поле непрерывно;

- вещество обладает массой покоя, а поле – нет;

- вещество малопроницаемо, поле полностью проницаемо;

- скорость распространения поля равна скорости света, скорость движения частиц на много порядков меньше.

Таким образом, вещество – вид материи, обладающий корпускулярными свойствами, для его характеристики используются масса покоя, спин, заряд и др.; поле – вид материи, который описывается длиной волны, фазой, амплитудой и их изменениями в пространстве и времени. Понятие поля нашло применение и в механике, где с его помощью был объяснен феномен гравитации.

2. Детерминизм. Динамические и статистические закономерности

Все явления и процессы в мире связаны между собой. Принцип детерминизма является выражением этой взаимосвязи и дает ответ на вопрос, существует ли в мире упорядоченность и обусловленность всех явлений, или же мир есть неупорядоченный хаос. В механической картине мира все связи между явлениями носят однозначный характер, поэтому миром правит необходимость, а случайностям нет места. П. Лаплас утверждал, что если бы мы в данный момент знали обо всех явлениях природы, то смогли бы логически вывести все события будущего. Следствием механистического детерминизма является фатализм.

Центральным понятием детерминизма является «закон». Закон понимается как объективная, всеобщая, необходимая, повторяющаяся связь между явлениями.

Отличительной особенностью законов классической механики состоит в том, что предсказания, полученные на их основе, носят достоверный и однозначный характер. Они получили название динамических. Динамические закономерности характеризуют поведение изолированных, индивидуальных объектов и позволяют установить точно определенную связь между отдельными состояниями объекта. Иначе говоря, динамические закономерности проявляются в каждом конкретном случае строго однозначно. Механистический детерминизм абсолютизировал динамические закономерности. Позже выяснилось, что не все явления подчиняются динамическим законам. В механике Ньютона и электродинамике Максвелла господствовал классический детерминизм, в рамках которого формируются динамические законы, однозначно связывающие физические параметры отдельных состояний объекта. Наряду с ними в науке с середины XIX века стали все шире применяться законы другого типа. Их предсказания не являются однозначными, а только вероятными. Именно это обстоятельство долгое время служило препятствием для признания их в науке как полноценных законов. Они рассматривались как вспомогательное средство для обобщения и систематизации эмпирических фактов. Эти законы получили название статистических.

Статистические закономерности проявляются в массе явлений и имеют форму тенденции. Эти законы называют вероятными, поскольку они описывают состояние индивидуального объекта лишь с определенной долей вероятности. Статистическая закономерность возникает как результат взаимодействия большого числа элементов и поэтому характеризует их поведение в целом. Необходимость в статистических закономерностях проявляется через действие множества случайных факторов. Эти законы, как и динамические, являются выражением детерминизма. Понятие вероятности в рамках статистического закона выражает степень возможности осуществления явления в конкретной совокупности условий. Вероятность есть количественное выражение возможности, шкала которой располагается от 0 до 1. При вероятности, равной нулю, данное событие никогда не наступает, при вероятности, равной единице, это событие наступает в каждом конкретном случае.

Поскольку динамические законы выражали необходимый характер связи, обеспечивающий точность и достоверность предсказания, их называли детерминистскими. Эта терминология сохранилась до настоящего времени, когда статистические законы по традиции называют индетерминистскими, что не соответствует действительности.

Итак, и динамические, и статистические закономерности выражают детерминизм. Однако это совершенно разные формы.

Классический, или лапласовский, детерминизм основан на представлении, согласно которому весь окружающий мир – это огромная механическая система, поэтому все будущие состояния ее строго предопределены ее начальным состоянием. В основе этой формы детерминизма лежат универсальные законы классической физики.

Вероятностный детерминизм опирается на статистические законы.

Когда сравнивают эти формы выражения регулярности в мире, то обычно обращают внимание на степень достоверности их предсказаний. Строго детерминистские законы дают точные предсказания в тех областях, где можно абстрагироваться от сложного характера взаимодействия между телами, отвлекаться от случайностей и тем самым значительно упрощать действительность. Однако такое упрощение возможно лишь при изучении простейших форм движения. Когда же переходят к исследованию сложных систем, состоящих из большого числа элементов, индивидуальное поведение которых трудно поддается описанию, тогда обращаются к статистическим законам, опирающимся на вероятностные предсказания.

Таким образом, в современной концепции детерминизма органически сочетаются необходимость и случайность. Поэтому мир и события в нем не являются ни фаталистически предопределенными, ни чисто случайными, ничем не обусловленными. Классический детерминизм чрезмерно подчеркивал роль необходимости за счет отрицания случайности в природе и поэтому давал искаженное представление о картине мира. Признание самостоятельности статистических законов, отображающих существование случайных событий, дополняет прежнюю картину строго детерминистского мира. В результате этого необходимость и случайность выступают как взаимосвязанные аспекты, случайность понимается как форма проявления необходимости. Таким образом, детерминизм становится вероятностным.

3. Основные принципы термодинамики. Значение законов термодинамики в описании явлений природы

Статистическое описание природы находит свое воплощение в термодинамике. Термодинамика базируется на двух основных законах.

Закон сохранения энергии. Он выполняется во всех явлениях природы и подтверждается опытом человечества.

Q = U – A, где U – внутренняя энергия, A – работа.

Тепло, сообщенное системе, расходуется на увеличение ее внутренней энергии и на совершение работы против внешних сил. В другой редакции этот закон звучит так: нельзя построить действующую машину, которая бы совершала работу, больше подводимой к ней извне энергии (вечный двигатель первого рода невозможен).

Тепловые процессы протекают самопроизвольно только в определенном направлении, такие процессы называются необратимыми. То есть тепло перетекает от более нагретого тела к менее нагретому.

Второе начало термодинамики указывает на существование двух форм энергии – теплоты (связанной с неупорядоченным, хаотическим движением) и работы, связанной с упорядоченным движением. Немецкий физик Р. Клаузиус использовал для формулировки второго закона термодинамики понятие энтропии, которое впоследствии австрийский физик Л. Больцман интерпретировал в терминах изменения порядка в системе. Когда энтропия системы возрастает, то соответственно усиливается беспорядок (хаос) в системе.