Учитывая соотношения, мы получаем из уравнений – систему уравнений
Поведение решений системы уравнений вполне очевидно. Из первого уравнения мы получаем, прежде всего, вероятность Wтого, что особь достигает возраста т:
В зависимости от величины К возможны три качественно различных случая. При К > 1 число новорожденных в единицу времени больше числа умерших, доминируют процессы воспроизводства, и при t→ оо мы получаем при всех г расходящуюся плотность x– оо. Наоборот, при К<1 воспроизводство слишком слабо, и при t– оо мы получаем x–* О при всех т, т.е. вид вымирает. Наконец, при К = I оба процесса находятся в равновесии, соответственно, существует бесконечно много стационарных состояний, и только от начального условия <р зависит, какое из них реализуется. Разумеется, в случаях К > 1 и К < 1 результат не зависит от начального условия <р.
Тем самым мы получаем качественную характеристику динамики индивидуального развития внутри отдельного вида при упрощающем предположении. Исследуем теперь, какие модификации возникают в том случае, когда п видов развиваются в соответствии с уравнениями, аналогичными уравнению, и, кроме того, взаимодействуют между собой посредством процесса отбора. Затронутая проблема связана с вопросом оптимальной стратегии старения, сложившимся в ходе эволюции.
4. Процессы отбора в моделях с непрерывным старением
Прежде всего систему п не взаимодействующих между собой видов можно описать уравнениями, обобщающими уравнение:
В качестве простого метода создания давления отбора мы по аналогии с моделью Эйгена потребуем постоянства общего числа особей в системе:
Чтобы условие выполнялось, необходимо модифицировать систему уравнений 13, что можно осуществить различными способами. Особый интерес представляют две возможности.
1. Введение потоковых членов в модель Эйгена.
Такая операция соответствует подстановкам
в уравнение, причем во избежание патологии, например, отрицательных концентраций, должны выполняться неравенства
2. Регуляция скорости воспроизведения.
Регуляция достигается с помощью подстановки
И в том, и в другом случае существенно, что модификации либо видо-, либо возрастоспециф ич ны.
Если равенство продифференцировать по времени и воспользоваться уравнением с подстановками, то получится следующее:
где по определению
Учитывая положительность
мы получаем
и, наконец, приходим к системе уравнений
Проводя аналогичные вычисления с использованием подстановок, получаем, полагая
систему уравнений
Уравнения и описывают временную эволюцию систем стареющих конкурирующих между собой видов и тем самым удобны для математического анализа индивидуального развития и отбора.
В отличие от системы уравнений для независимых видов дифференциальные уравнения и связаны между собой через определенное соотношением среднее значение. С одной стороны, эта связь выступает как математическое выражение взаимодействия между видами, а с другой – исключает возможность получения аналитических решений и обусловливает тем самым весьма широкое применение численных методов.
Ряд интересных утверждений может быть высказан и без явного решения системы уравнений. В частности, необходимо выяснить, каким образом, зная функции d, и Ь, можно определить те виды, которые замещают другие и поэтому доминируют при больших временах.
Необходимый для этого качественный анализ динамики удается осуществить с помощью подстановок
где
– общее число частиц,
– нормированная возрастная структура i-ro рода. Рассмотрим сначала ситуацию, описываемую уравнением. Пользуясь подстановкой, получаем следующие уравнения для п, иpi:
и
Уравнение имеет в точности такую же структуру, как уравнение Эйгена, с тем лишь различием, что теперь приспособленность
– функционал нормированной возрастной структуры
Его временная эволюция определяется изменением во времени возрастное структуры
Мы получаем
При рассмотрении уравнения Эйгена мы обнаружили, что уравнение допускает п различных стационарных решений вида
т.е. стационарны только такие ситуации, в которых все N особей представлены одним видом. С учетом соотношения из формулы следует, что
поэтому уравнение для
Вводя сокращенные обозначения
запишем уравнение в виде
и далее, с помощью соотношения,
а также
вследствие того, что по определению р,
Тем самым мы полностью охарактеризовали стационарные решения систем уравнений. Можно показать, что при заданных
Величины Cjв силу соотношения определяют, поэтому
Из стационарных решений устойчиво только одно, и при t–* оо именно оно описывает поведение системы. Для этого решения справедливы неравенства
т.е. выживает вид, обладающий наибольшей приспособленностью. Соотношения – позволяют определить этот вид посредством формулы
по известным функциям
Можно показать, что