Значительная часть выживших клонов обладает рядом нарушений, возникающих из-за несоответствующего эпигенетического репрограммирования генома. Суть проблемы заключается в том, что развитие клонированного животного происходит за счет реализации генетической информации, заключенной в хромосомах донорского ядра из дифференцированной соматической клетки, при этом состояние активности разных генов в соматических и эмбриональных клетках значительно отличается. В соматических клетках в активном состоянии находятся гены, характерные для дифференцированной ткани и ответственные за синтез специфических белков. В то же время для развития эмбриона на ранних стадиях требуется, чтобы синтезировались совершенно другие белки, информация о которых закодирована в генах раннего развития.
В процессе естественного полового размножения зигота образуется в результате слияния мужской и женской половых клеток. В процессе гаметогенеза в половых клетках происходит ремоделирование наследственного материала, т.е. его подготовка к дальнейшим процессам оплодотворения и раннего развития. В момент оплодотворения их гены "молчат", с них не происходит считывания информации. Ядро соматической клетки при его переносе в энуклеированный ооцит не "молчит", в нем активно происходят процессы транскрипции (считывания) [21].
Первые успешные опыты по клонированию доказали, что соматическое ядро в цитоплазме ооцита подвергается репрограммированию - процессу переориентирования донорского генома на синтез белков, соответствующих раннему зародышу. Становятся активными те участки хромосом, которые усиленно работают у раннего зародыша. Во многих случаях процесс репрограммирования генома ядерного трансплантата является неполным, что и приводит к ранней остановке развития эмбрионов.
Существует и другая проблема, связанная с так называемым геномным импринтингом. Явление геномного импринтинга состоит в том, что для нормального развития организма необходимы гены как отцовского, так и материнского происхождения. Известно, что определенные гены так импринтированы в процессе гаметогенеза, что после процесса оплодотворения экспрессируется только отцовский или только материнский аллель. При переносе соматического ядра в энуклеированный ооцит этот механизм может нарушаться, поскольку после их слияния происходит сложная функциональная перестройка всего клеточного генома, в течение которой велика вероятность ошибок.
В данных работах приводится информация о различиях в организации материнского и отцовского хроматина, подчеркивается роль метилирования в подавлении активности генов. Высказывается предположение, что причиной низкой выживаемости животных, полученных в результате переноса ядер, являются генетические нарушения (мутации), аккумулирующиеся в процессе старения клеток организма-донора ядер или во время их культивирования в условиях in vitro.
Высокая частота возникновения аномалий и их межвидовое сходство, а также получение здорового потомства от животных-клонов говорит в пользу эпигенетической природы возникновения таких нарушений, то есть наиболее достоверным объяснением пороков развития является неспособность реконструированных эмбрионов соответствующим образом репрограммировать статус ядра соматической клетки[22].
В работах R. Jaenisсh обсуждается проблема укорачивания концевых участков хромосом (теломер) в клетках клонированных животных. С началом дифференцировки в большинстве клеток происходит необратимое укорачивание концевых участков хромосом, что ставит вопрос о том, наследуют ли клонированные животные укороченные теломеры их генетических родителей и подвержены ли они вследствие этого преждевременному старению. Укорачивание теломер зарегистрировано у первой клонированной овцы Долли, но не отмечено у клонированных в 2000 г. телят. Было установлено, что активность фермента теломеразы, удлиняющего концевые участки хромосом, в ядерных трансплантатах находится на уровне, сходном с контролем. Теломераза полностью восстанавливает длину теломер донорского генома на стадии раннего эмбриона, и, как считает автор статьи, этот фактор не может влиять на выживаемость клонов.
Клонирование методом переноса ядер неодинаково эффективно при использовании в качестве доноров дифференцированных соматических и тотипотентных эмбриональных стволовых клеток. Реконструированные эмбрионы с геномом эмбриональной стволовой клетки, достигшие стадии бластоцисты, развиваются до рождения в 10-20 раз чаще, чем эмбрионы, полученные после переноса ядер соматических клеток. Эти наблюдения дают основания предполагать, что ядру недифференцированной эмбриональной клетки в отличие от дифференцированной требуется лишь незначительное репрограммирование. Это объясняется сходством эпигенетического статуса геномов эмбриональных стволовых клеток и клеток раннего эмбриона. Под эпигенетическим статусом в генетике развития понимается сумма всех взаимодействий генов со средой их функционирования.
Ранее было показано, что родившиеся животные-клоны часто проявляют признаки нарушения дыхания и кровообращения, при рождении имеют повышенный вес тела и плаценты, вследствие чего этой патологии был присвоен термин "синдрома крупного молодняка". Авторами данных статей, однако, не было установлено какой-либо взаимосвязи между изменением активности ряда импринтированных генов у клонов и повышенным весом; аномалии в экспрессии генов носили случайный характер.
Полученные результаты свидетельствовали о значительных вариациях в активности и уровне метилирования импринтированных генов в плацентах и тканях мышат, полученных в результате трансплантации ядер из эмбриональных стволовых клеток. Чтобы выяснить, являются ли эти нарушения результатом изменения импринтинга в донорской популяции ЭС клеток или следствием неправильного репрограммирования донорского генома после пересадки ядер, у нескольких линий ЭС клеток вызывалась направленная дифференцировка добавлением ретиноевой кислоты. В результате выяснилось, что имеются значительные вариации в уровне экспрессии импринтированных генов не только между разными линиями ЭС клеток, но и между различными субклонами одной линии ЭС клеток (т.е. между ЭС клетками, берущими начало от одной-единственной родительской клетки). Эти аномалии возникают в процессе культивирования ЭС клеток в условиях in vitro[27].
Независимо от типа клеток, используемых в качестве доноров ядер, только небольшой процент реконструированных эмбрионов (1-3%) развиваются до рождения, из них менее половины достигают стадии половозрелости. Это поднимает вопрос о том, имеет ли вообще место нормальная регуляция взаимодействия генов у клонированных животных. Рождение здоровых клонов может объясняться толерантностью развития млекопитающих к большей части эпигенетических нарушений, а летальный эффект вызывается кумулятивным действием потерь нормальной регуляции генов во многих локусах.
В заключение авторами статей делается вывод, что, по всей вероятности, клоны всех видов млекопитающих, включая людей, будут обладать эпигенетическими аномалиями и связанным с ними фенотипом. Поскольку эмбриональные стволовые клетки являются потенциальным источником многих типов клеток для использования в целях трансплантационной терапии, очень важно установить, характерно ли состояние эпигенетической нестабильности для ЭС клеток человека, и оценить значение этого явления на перспективы применения ЭС клеток в медицине[13][24].
Выводы
Клонирование – процесс создания генетически сходного организма несексуальным (неполовым) путем. Клонирование использовали много лет для выращивания растений. Животное клонирование было предметом изучения для ученых многие годы, но получало мало внимания до 1997, пока не было клонировано первое млекопитающее - овечка Долли. Ученный Долли и несколько других ученых клонировали различных животных, включая коров и мышей. Недавний успех клонирования привел к жестким дебатам среди ученых, политиков и широкой публики об использование и этике клонирования животных и возможно человека.
За последние 50 лет, ученые провели эксперименты по клонированию в обширном круге животных, использовав много различных методов. В 1979, исследователи произвели первых генетически идентичных мышей, расколов эмбрион мыши в экспериментальной трубе, а затем внедрив получившийся эмбрион в матку взрослой самки мыши. Вскоре после того, как исследователи произвело первых генетически идентичных коров, овцу и цыплят, перемещая ядро клетки, взятой у раннего эмбриона в яйцо, у которого было освобождено ядро.
Главная причина клонирования животных в том, чтобы произвести организмы с определенными качествами, которые необходимы человеку, например овца была выведена чтобы предоставить человеческий инсулин. Если бы ученые полагались только на половое (сексуальное) размножение чтобы вывести этих животных, они бы рисковали тем, что необходимые им качества исчезли, так как половое размножение (сексуальное) переставляет генетический код в блоках. Другими причинами для клонирования могут быть потерянные или умершие домашние животные или животные, которые находятся на грани вымирания. Какими бы не были причины, новые технологии клонирования разожгли много этических спорах среди ученых. Некоторые государства рассмотрели или предписали законодательство, чтобы замедлить, ограничить или запретить эксперименты клонирования. Ясно, что клонирование будет частью нашей жизни в будущем, но будущее этой технологии должно всё же быть определено.
Список использованной литературы
1. С.И.Заир – Бек, И.В.Муштавинский, Развитие критического мышления на уроке, - М.;Просвещение,2004.
2. Газета "Биология" Издательского дома "Первое сентября", № 12/2003.(Л.В. ЯКОВЕНКО Медицина и клонирование)