Смекни!
smekni.com

Транспорт субстратов и продуктов (стр. 1 из 2)

Содержание

Транспорт субстратов и продуктов

Механизмы клеточной проницаемости

Организация транспортных систем

Способы сопряжения транспорта с энергией метаболизма

Регуляция транспортных процессов

Транспорт веществ из клетки в среду: секреция и экскреция

Транспорт субстратов и продуктов

С клеточной мембраной связан целый ряд важнейших метаболических процессов. Вот главные из них:

репликация ДНК;

биосинтез белков, липидов, компонентов клеточной стенки;

дыхание, фотосинтез;

клеточное деление;

мембранный транспорт, который и будет предметом рассмотрения в данной главе.

Мембранным транспортом будем называть транслокацию веществ через биологические мембраны с обязательным участием молекул-посредников: "подвижных переносчиков" или "каналообразующих" компонентов.

Механизмы клеточной проницаемости

Следует различать пассивное проникновение веществ через мембрану без участия посредников и активное проникновение веществ через мембрану с участием посредников - собственно транспорт.

Пассивная проницаемость мембраны - это проникновение через нее веществ за счет теплового движения молекул. Конечным итогом такого процесса является уравнивание внеклеточной и внутриклеточной концентраций вещества. Начальная скорость физической диффузии зависит от внешней концентрации вещества, а изменение температуры мало влияет на скорость процесса.

Для большинства гидрофильных природных субстратов коэффициент диффузии через двойной липидный слой мембраны имеет очень низкую величину, поэтому скорость их диффузии недостаточна для обеспечения нормального протекания метаболических процессов.

За счет физической диффузии осуществляется проникновение в клетки молекул воды, некоторых газов, а также углеводородов и гидрофобных ксенобиотиков.

В некоторых случаях истинного транспорта так же, как и при физической диффузии, происходит лишь уравнивание внешней и внутренней концентраций вещества. Такие процессы носят название облегченной диффузии. Они осуществляются с участием белков, и скорость их достаточно велика. Типичным примером является проникновение веществ через наружную мембрану грамотрицательных бактерий с участием беяков-поринов.

Значительно чаще транспорт приводит к заметному концентрированию транспортируемых веществ в клетке, так что >> So. Такой транспорт представляет собой термодинамическую работу и требует затраты энергии. Его называют концентрирующим или активным транспортом.

Особенностью транспортных процессов, в отличие от диффузии, является также их стереоспецифичность, в результате которой близкие по химической структуре вещества конкурируют при транспорте за общий переносчик. Ограниченное количество молекул переносчика в мембране приводит к тому, что зависимость начальной скорости транспорта от концентрации субстрата описывается уравнением гиперболы, формально сходным с уравнением Михаэлиса-Ментен, описывающим ферментативную кинетику с аналогичными параметрами:

где V - начальная скорость транспорта; V - максимальная скорость при насыщающей концентрации субстрата; K. m - концентрация субстрата, при которой скорость транспорта равна половине максимальной. В этом случае говорят, что транспортный процесс подчиняется "кинетике насыщения".

Параметры К. П1 и называют параметрами транспортной системы: К. т характеризует сродство транспортного посредника к субстрату, aVmex пропорциональна количеству посредника в мембране и скорости его функционирования. Для вычисления этих параметров, как и в ферментативной кинетике, используют графики линейных аппроксимат уравнения Михаэлиса-Ментен.

Организация транспортных систем

Одной из первых моделей транслокации субстратов через биологические мембраны была модель "подвижного" переносчика, в которой предполагалось присутствие интегрального мембранного компонента, способного к образованию гидрофобного комплекса с гидрофильным субстратом, экранирующего последний от гидрофобной внутримембранной среды. Предполагалось, что образованный комплекс диффундирует на внутреннюю поверхность мембраны и там освобождает субстрат во внутриклеточную среду. По этому типу действительно осуществляется перенос ионов некоторыми ионофорами. Однако подобный механизм, как правило, не обеспечивает концентрирование субстрата в клетке. Вторая модель предполагает наличие в мембране гидрофильного канала, через который могут проникать субстраты. В отличие от малоспецифичных каналов, образуемых поринами, он должен обладать высокой специфичностью за счет "эстафетной" передачи субстрата от одного центра связывания к другому. Такой канал может стать асимметричным и обеспечить концентрирование субстрата в клетке.


Реальные транспортные системы часто включают более одного белкового компонента, а интегральные мембранные белки-"переносчики" многократно пересекают мембрану, образуя в ней сложную гидрофильную структуру. Молекулярные механизмы транслокации субстрата через такие структуры остаются до конца не расшифрованными.

По типу молекулярной организации транспортные системы можно разделить на два больших класса.

Транспортные системы, включающие периплазматические связывающие белки, которые обеспечивают "узнавание" и "доставку" субстрата к мембранному переносчику. Такие системы чувствительны к осмотическому шоку и зависят от энергии АТР. К ним относятся системы транспорта некоторых аминокислот, Сахаров, неорганических катионов.

Транспортные системы, включающие только интегральные мембранные компоненты. Такие системы, как правило, осуществляют одновременный перенос субстрата и одновалентных неорганических катионов и зависят от энергии ТЭП. К ним относятся системы транспорта большинства аминокислот, Сахаров, органических кислот и др.

Способы сопряжения транспорта с энергией метаболизма

Для концентрирования веществ внутри клеток необходимо превращение равновесного процесса "облегченной" диффузии в одновекторный процесс "активного" транспорта. Для этого необходима затрата энергии, т.е. создание своего рода "энергетического привода" для транспорта.

Сопряжение транслокации субстрата с энергией метаболизма осуществляется двумя основными путями.

Энергия может затрачиваться на такую химическую модификацию субстрата, которая делает его неспособным взаимодействовать с переносчиком на внутренней поверхности мембраны, а также проникать через мембрану чисто диффузионным путем, что предотвращает его "утечку" из клетки.

Энергия может затрачиваться на такую модификацию переносчика, которая делает его неспособным взаимодействовать с субстратом на внутренней поверхности мембраны, что также предотвращает "утечку" субстрата из клетки.

Системы первого типа фактически осуществляют первый этапов метаболизма этих субстратов и поэтому называются системами векторного метаболизма или реакциями переноса радикалов. К ним, например, относится фосфотрансфе-разная система транспорта Сахаров и сахароспиртов, называемая также системой векторного фосфорилирования, и некоторые другие системы. Фосфотрансферазная система опосредует следующую цепь реакций.


Системы второго типа, в свою очередь, подразделяются на системы "первичного" активного транспорта, генерирующие ТЭП и системы "вторичного" активного транспорта, использующие ТЭП для транспорта органических и неорганических субстратов. В некоторых случаях, например в системах со "связывающими" белками, энергия АТР непосредственно используется в транспорте субстратов. Системы "вторичного" активного транспорта распространены более широко и могут функционировать в соответствии с тремя основными механизмами.

Катионы транслоцируются в клетку по градиенту электрического потенциала путем своеобразного электрофореза.

Незаряженные соединения транслоцируются в клетку совместно с катионами Н+ или Na+.

Анионы также могут транслоцироваться в клетку путем сим-порта, присоединяя такое количество катионов, которого достаточно для перевода комплекса субстрата с переносчиком в положительно заряженную форму. Кроме того, анионы внешней среды могут обмениваться на внутриклеточные анионы. По механизму антипорта могут транслоцироваться и катионы, например у прокариот широко распространена система антипорта Н+ и Na+, а у эукариот - система антипорта К+ и Na+.


Регуляция транспортных процессов

Как и регуляция процессов внутриклеточного метаболизма, она осуществляется на двух уровнях: на уровне биосинтеза белковых посредников и на уровне функционирования готовых посредников.

Основными механизмами регуляции биосинтеза переносчиков транспортных систем являются индукция, репрессия и катаболитная репрессия.

Как и в случае ферментов, по типу индукции и катаболитной репрессии регулируется биосинтез компонентов тех транспортных систем, субстраты которых участвуют в процессах катаболизма. По типу репрессии избытком субстрата регулируется главным образом биосинтез аминокислотных транспортных систем.

Особенность регуляции некоторых транспортных процессов состоит в том, что индукция осуществляется не внутриклеточным субстратом, а внеклеточным субстратом.

Такая индукция называется экзогенной и требует наличия промежуточного регуляторного интегрального мембранного белка, передающего сигнал индуктора на репрессор.