Смекни!
smekni.com

Строение и функции субклеточных структур растительной клетки: клеточная стенка и цитоскелет (микротрубочки и микрофиламенты) (стр. 3 из 3)

Строение и функции микротрубочек.

Одним из обязательных компонентов цитоплазмы растительной клетки являются микротрубочки. В морфологическом отношении микротрубочки представляют собой длинные полые цилиндры с внешним диаметром 25 нм. Стенка микротрубочек состоит из полимеризованных молекул белка тубулина. При полимеризации молекулы тубулина образуют 13 продольных протофиламентов, которые скручиваются в полую трубку. Размен мономера тубулина составляет около 5 нм, равного толщине стенки микротрубочки, в поперечном сечении которой видны 13 глобулярных молекул.

Микротрубочка является полярной структурой, имеющей быстро растущий плюс-конец и медленно растущий минус-конец.

Микротрубочки являются очень динамичными структурами, которые могут достаточно быстро возникать и разбираться. При использовании электронных систем усиления сигнала в световом микроскопе можно видеть, что в живой клетке микротрубочки растут, укорачиваются, исчезают, т.е. постоянно находятся в динамической нестабильности. Оказалось, что среднее время полужизни цитоплазматических микротрубочек составляет всего лишь 5 минут. Так за 15 мин около 80% всей популяции микротрубочек обновляется. В составе веретена деления микротрубоски имеют время жизни около 15-20 с. Однако 10-20% микротрубочек остаются относительно стабильными достаточно долгое время (до нескольких часов).

Сами микротрубочки не способны к сокращению, однако они являются обязательными компонентами многих движущихся клеточных структур, таких как веретено клетки во время митоза как микротрубочки цитоплазмы, которые обязательны для целого ряда внутриклеточных транспортов, таких как экзоцитоз, движение митохондрий и др.

В целом роль цитоплазматических микротрубочек может быть сведена к двум функциям: скелетной и двигательной. Скелетная, каркасная, роль заключается в том, что расположение микротрубочек в цитоплазме стабилизирует форму клетки. Двигательная роль микротрубочек заключается не только в том, что они создают упорядоченную, векторную систему движения. Микротрубочки цитоплазмы а ассоциации со специфичными ассоциированными моторными белками образуют АТФазные комплексы, способные приводить в движение клеточные компоненты. Кроме того, микротрубочки участвуют в процессах роста клеток. У растений, в процессе растяжения клеток, когда за счет увеличения центральной вакуоли происходит значительный рост объема клеток, большие количества микротрубочек появляются в периферических слоях цитоплазмы. В этом случае микротрубочки, так же как и растущая в это время клеточная

стенка, как бы армируют, механически укрепляют цитоплазму.

Химический состав микротрубочек

Микротрубочки состоят из белков-тубулинов и ассоциированных с ними белков. Молекула тубулина представляет собой гетеродимер, состоящий из двух разных субъедениц: из

и
которые при ассоциации образуют собственно белок тубулин, изначально поляризованный. При полимеризации молекулы тубулина объединяются таким образом, что с
одного белка ассоциируется
-субъеденица следующего белка и т.д. Следовательно, отдельные протофибриллы возникают как полярные нити, и соответственно вся микротрубочка тоже является полярной структурой, имеющей быстро растущий плюс-конец и медленно растущий минус-конец.

При достаточной концентрации белка полимеризация происходит спонтанно. При спонтанной полимеризации тубулинов осуществляется гидролиз одной молекулы ГТФ, связанной с

- тубулином. Во время наращивания длины микротрубочки связывание тубулинов идет с большей скоростью на растущем плюс-конце. Но при недостаточной концентрации тубулина микротрубочки могут разбираться с обоих концов. Разборке микротрубочек способствуют понижение температуры и наличие ионов Са2.

Существует ряд веществ, которые влияют на полимеризацию тубулина. Так, алкалоид колхицин, связывается с отдельными молекулами тубулина и рпедотвращает их полимеризацию. Это приводит к падению концентрации свободного тубулина, способного к полимеризации, что вызывает быструю разборку цитоплазматических микротрубочек и микротрубочек веретена деления. Таким же действием обладают колцемид и нокодозол , при отмывании которых происходит полное восстановление микротрубочек.

Стабилизирующим действием на микротрубочки обладает таксол, который способствует полимеризации тубулина даже при его низких концентрациях.

Также в составе микротрубочек обнаруживаются ассоциированные с ними дополнительные белки, так называемые МАР-белки. Эти белки, стабилизируя микротрубочки, ускоряют процесс полимеризации тубулина.

Строение и функции микрофиламентов

Микрофиламенты представляют собой очень тонкие и длинные нитевидные белковые структуры, встречающиеся во всей цитоплазме. Под плазматической мембраной микрофиламенты образуют сплошное сплетение, формируя цитосклет. Вся эта структура очень лабильна. Под влиянием различных воздействий (большое значение имеет концентрация кальция) микрофиламенты распадаются на отдельные фрагменты и вновь собираются. Так как микрофиламенты являются сократимыми элементами цитоскелета, то участвуют в изменении формы клетки, во внутриклеточных перемещениях органелл, расхождении хромосом при делении клетки. Кроме этого микрофиламиенты выполняют исследующие функции:

-ответственны за перемещение: хлоропластов, которые могут изменять свое положение в зависимости от освещения;

-клеточных ядер;

-пузырьков;

-участвуют: в фагоцитозе (но, не в пино- или экзоцитозе); в образовании перетяжки при клеточном делении (здесь действует кольцо из пучков микрофиламентов, опоясывающих клетку); в движении хроматид и хромосом при делении ядра.

Внутриклеточное движение возникает при взаимодействии микрофиламентов из актина (актиновых нитей) с миозином.

Химический состав микрофиламентов

В состав микрофиламентов входит в основном белок актин. Но кроме него входят миозин, актинин и др.

Актин - глобулярный белок, он составляет 5-15 % всего клеточного белка и является важнейшим белком эукариотических клеток. Глобулярный актин (гамма-актин) полимеризуется в актиновые филаменты (F-актин), состоящие из двух закрученных друг около друга спиралей (диаметр - около 6 нм, длина - несколько мкм). Актин образует трехмерную сеть из большого числа нитей или пучки не менее чем из 20 нитей. В клетке существует обратимое равновесие: гамма-актин - F-актин - пучки F-актина.

Миозин в эукариотических клетках содержится в меньшем количестве (0,3-1,5 % клеточного белка), чем актин. Нитевидная молекула миозина (молекулярная масса более 450 000, длина 150 нм) состоит из двух больших и нескольких малых субъединиц, образующих длинную двойную спираль. Один конец этой спирали несет две головки. Конец с головками катализирует расщепление АТФ (миозиновая АТФаза) и может специфически связываться с актином. Актин активирует АТФазу. При расщеплении АТФ освобождается энергия, необходимая для внутриклеточных движений.

Заключение

Клеточная стенка растений выполняет ряд важных функций. Окружая растительную клетку со всех сторон, она служит связующим звеном между ней и соседними клетками. Соединяясь между собой тонкими нитями цитоплазмы – плазмодесмами, через которые осуществляется перемещение веществ из клетки в клетку.

Благодаря тому, что первичная оболочка эластична, клетка в этот период интенсивно растет. После прекращения роста образуется вторичная оболочка, в состав которой входит лигнин и ряд других веществ - придающий клетке прочность, жесткость. Эти свойства особенно важны для наземных растений: во-первых, это прочный «скелет», во-вторых, защита от избыточной потери воды. Клеточная оболочка прозрачна, поэтому солнечные лучи легко проникают внутрь клетки к хлоропластам.

Цитоскелет представляет собой белковые, неветвящиеся полимеры, участвующие в процессе перемещения клеточных компонентов, а также выполняют каркасную скелетную роль. Также эти компоненты участвуют в процессе деления клетки, формируя нити веретена деления.

Из выше перечисленного видно, что данные компоненты клетки играют важную


Список литературы

1. Андреева Т.Ф. Маевская С.Н. Воеводская С.Ю. «Физиология растений»

1998г.

2.Головко Т.К. Добрых Е.В. «Физиология растений» 1993г.

3. Фрей-Виссменг А. Мюлеталер К. «Ультраструктура растительной

клетки» 1968г.

4. Ченцов Ю.С. «Введение в клеточную биологию», М. Академкнига,

2005 г.

5. Якушкина Н.И. Бахтенко Е.Ю. «Физиология растений», М. Владос

2005 г.

6. www.ido.tsu.ru

7. http://www.medkurs.ru/lecture1k/med_biology/qm31/2499.htm

8. http://school.iot.ru/predmety/biologiya.doc