Смекни!
smekni.com

Состояние глутатионового звена антиоксидантной системы крови практически здоровых людей с лор-паталогиями, проживающих в различных районах города Красноярска (стр. 4 из 9)

О2ˉ + О2ˉ → H2O2 + O2

HO+ HO.H2O2 + O2

HO.2 + Н+ H2O2 + O2

В определенных условиях медьсодержащая форма SOD может взаимодействовать с перекисью водорода и выступать в качестве прооксиданта, инициируя образование радикалов – супероксида и гидроксила:

Cu2+-СОД + H2O2 ←→ Cu+-СОД + 2Н+ + О2ˉ

Cu+-СОД + H2O2 ←→ Cu2+-СОД + ОН. + ОН+

СОД играет важную роль в защите клеток от действия супероксид-анион радикала, стабилизирует клеточные мембраны, предотвращая процессы ПОЛ, снижая уровень О2ˉ, она защищает от его дезактивирующего действия CAT и GPO [Александров,2007].

Регулирующее влияние на активность SOD оказывают глутатион, цистеин, другие SH-содержащие соединения, а также опосредованно ферменты глутатионового обмена [Зенков, Меньщикова, 2004].

Каталаза – фермент, участвующий в детоксикации нерадикальной активной формы кислорода – Н2О2. Эта гемсодержащий фермент, локализованный преимущественно в пероксисомах клеток. Большая молекулярная масса фермента препятствует его проникновению через клеточную мембрану [Биленко, 1999]. Разложение Н2О2 каталазой осуществляется в два этапа.

CAT + Н2О2 → CAT - Н2О2

CAT - Н2О2 + Н2О2 → CAT + 2Н2О + О2

При этом в окисленном состоянии каталаза работает и как пероксидаза, катализируя окисление спиртов или альдегидов:

CАТ - Н2О2 + >CHOH → CАТ + 2Н2О + >C=O

Каталаза ингибируется азидом, цианидом, пероксидом водорода в высоких концентрациях и некоторыми органическими гидроперекисями. Каталаза может выступать источником образования АФК. 0,5% кислорода, образующегося в результате разложений перекиси водорода, возникает в возбужденном синглетном состоянии.

Глутатионпероксидаза – фермент, служащий для инактивации перекиси водорода в клетках высших животных. GPO– гликопротеин, имеющий в активном центре четыре атома селена. Он является гидрофильным соединением, что затрудняет его проникновение в липидный слой мембран, основная часть фермента локализована в цитозоле, а остальная – в митохондриях. GPO имеет селеновые изоферменты: внеклеточное GPO, обнаруженная в плазме и молоке, GPO– G1, выделенная из цитозоля клеток печени и кишечника, а также неселеновый изофермент, идентичный GSТ.

«Классическая» GPO представляет собой тетрамер, состоящий из четырех идентичных сферических субъединиц. Каждая субъединица содержит по одному атому селена, на тетрамер имеется два активных GSH-связывающих центра. При уменьшении уровня GPO снижается устойчивость организма к окислительному поражению, что может приводить к развитию свободнорадикальной патологии [Белоусов, Суслова, Трунова, 1998].

GPO катализирует реакцию восстановления глутатионом нестойких органических гидропероксидов, включая гидропероксиды полиненасыщенных жирных кислот, стабильные соединения – оксикислоты:

2GSH + ROOHGSSG + ROH + H2O

Все GPO, подобно каталазе, способны также утилизировать перекись водорода:

2GSH + H2O2GSSG + 2H2O

Также селенсодержащая GPO участвует в обезвреживании пероксинитрита:

2GSH + ONOO-GSSG + NO + H2O

Сродство GPO к Н2О2 выше, чем у каталазы, поэтому первая более эффективно работает при низких концентрациях перекиси водорода, в то же время в защите клеток окислительного стресса, вызванного высокими концентрациями Н2О2, ключевая роль принадлежит каталазе. В целом же, GPO значительно важнее, чем каталаза, так как каталаза сосредоточена в микросомах, а GPO – в цитозоле и митохондриях, сродство GPO к пероксиду водорода значительно выше, поэтому Н2О2 элиминируется GPO, в некоторых тканях каталаза почти ответствует и GPO играет главную роль в валовом метаболизме Н2О2 [Зубакова, Варакина, Николенко, 1999]. В клетках млекопитающих также обнаружен изофермент GPO, названный «GPO гидроперекисей фосфолипидов». Изофермент помимо Н2О2 и липидных гидроперекисей способен восстанавливать гироперекиси фосфолипидов, он эффективно взаимодействует с гидроперекисями фосфотидилхолина, холестерина и эфира холестерина в мембранах и липопротеинах низкой плотности. Совместно с токоферолом GPO гидроперекисей фосфолипидов практически полностью подавляет ПОЛ в биомембранах.

Активность GPO в живых клетках увеличивается при действии ионизирующей радиации, интоксикации этанолом, акрилонитрилом, при Е-авитаминозе. Особо важна роль GPO в условиях окислительного стресса, так как он предупреждает возникновение и развитие пероксидации, устраняет ее источники и продукты, GPO – является одним из важнейших компонентов ферментативной АОС [Брискин, Рыбакова, 2000].

Глутатион-S-трансфераза входит в семейство ферментов, нейтрализующих токсическое влияние различных гидрофобных и электрофильных соединений путем их коньюгации с восстановленным глутатионом, GST локализованы преимущественно в цитозоле клеток. Основная функция GST-защита клеток от ксенобиотиков и продуктов ПОЛ посредством их восстановления, присоединения к субстрату молекулы глутатиона или нуклеофильного замещения гидрофобных групп:

ROOH + 2GSHROH + GSSG + H2O

R + GSHHRSG

RX + GSHRSG + HX

GST способны восстанавливать гидроперокси-группы окисленных фосфолипидов непосредственно в мембранах без их предварительного фосфолипидного гидролиза свободными жирными кислотами. Этот фермент конъюгирует с GSН токсичные продукты ПОЛ (ноненали, децинали, холестерин-α-оксид) и тем способствуют их выведению из организма. Таким образом, GST является важным компонентом антиоксидантной защиты, особенно от эндогенных метаболитов, образующих при окислительном стрессе [Владимиров, 1998].

Глутатионредуктаза. Во многих реакциях, катализируемых GPO и GST, две молекулы GST соединяются дисульфидной связью и образуют окисленный глутатион. Для восстановления GSSG в клетках существует специальный фермент – глутатионредуктаза [Зенков, Меньщикова, 2004].

ГР широко распространенный флавиновый фермент, поддерживающий высокую внутриклеточную концентрацию GSH, катализируя обратимое NFDFH– зависимое восстановление GSSG с образованием двух молекул GSH.

GSSG + NADFH + H+ → 2GSH + NADF+

ГР содержится в основном в растворимой части клетки.

Глюкоза-6-фосфатдегидрогеназа. Для восстановления окисленного глутатиона ГР в качестве донара водорода используется NADFH, который образуется в пентозофосфатном пути в ходе глюкозо-6-фосфатдегидрогеназной реакции [Андреев, 1999]

G6FD – фермент, катализирующий начальную реакцию пентозофосфатного пути: восстановление глюкозо-6-фосфата в 6-фосфоглюконат. Она состоит из двух типов субъединиц, которые состоят из 479 аминокислотных остатков, имеют один и тот же СООН - концевой участок, но разные NH2-концы, Эти субъединицы различаются по длине и последовательности аминокислот. Реакцию, катализируемую G6FD, с кинетической точки зрения можно рассматривать как двухсубстратную реакцию, протекающую с участием субстрата и кофермента, выполняющего роль второго субстрата. Фермент очень сильно ингибируется NADFH и ATF, по типу конкурентного ингиирования.

Глутатион – трипептид (L-γ-глутамил-L-цистеинилглицин), который при физиологических значениях рН имеет две отрицательно заряженные карбоксильные группы и положительно заряженную аминогруппу.

Наличие γ-глутамильной связи защищает трипептид от деградации внутриклеточными пептидазами, а сульфгидрильная группа цистеина может служить донором электронов, придавая глутатиону свойства восстановителя и способность удалять свободные радикалы. Одноэлектронная реакция GSH со свободными радикалами приводит к образованию тиильного радикала GS., который при димеризации с другим GS. радикалом дает дисульфид глутатиона (GSSG). Второй тип окислительно-восстановительных реакций, в которых принимает участие глутатион - это реакции тиол-дисульфидного обмена [Brune,1995]. При окислительно-восстановительных реакциях третьего типа происходит двухэлектронное окисление с образованием интермедиата, который затем реагирует со второй молекулой, идентичной первой или отличной от нее. При этом в первом случае образуется GSSG, а во втором-смешанный дисульфид.

В клетках всех типов GSH синтезируется в ходе двух последовательных реакций, катализируемых γ-глутамилцистеинсинтетазой (γ-GCS) и GSН-синтетазой (GS). γ-GCS катализирует образование пептидной связи между γ-карбоксильной группой глутамата и α-аминогруппой цистеина. Глутатионсинтетаза образует пептидную связь между α-карбоксильной группой цистеина в составе γ-глутамилцистеина и α-аминогруппой глицина. Обе реакции являются ATF-зависимыми, имеют сходный каталитический механизм и протекают через образование ацилфосфатного интетрмедиата [Davies,1995].